Twisting the Quark-Gluon Plasma: Insights into Electromagnetic Emission from a Rotating Medium

Jorge David Castaño-Yepes

Enrique Muñoz

The one-loop photon (like) polarization tensor

Ayala, Villavicencio, and Muñoz discussed this Feynman diagram in their talks

$$\mathrm{i}\Pi^{\mu\nu} = -\frac{1}{2} \int \frac{d^4k}{(2\pi)^4} \mathrm{Tr}\Big\{\mathrm{i}q_f \gamma^{\nu} \mathrm{i}S\left(k\right) \mathrm{i}q_f \gamma^{\mu} \mathrm{i}S(k-p)\Big\} + \mathrm{C.C.}$$

Fermion Propagator in a Vortical Background

This propagator was originally derived by Ayala et al., and subsequently revised by Ayala and J.J. Medina, for a rigid cylindrical rotation

PHYSICAL REVIEW D 103, 076021 (2021)

Fermion propagator in a rotating environment Alejandro Ayala^(b),^{1,2} L. A. Hernández^(b),^{2,3,4} K. Raya^(b),^{1,5} and R. Zamora^(b),^{6,7}

$$S(p) = \frac{\psi_{+} + m_{f}}{p_{+}^{2} - m_{f}^{2} + i\epsilon} \mathcal{O}^{(+)} + \frac{\psi_{-} + m_{f}}{p_{-}^{2} - m_{f}^{2} + i\epsilon} \mathcal{O}^{(-)}$$
$$\mathcal{O}^{(\pm)} = \frac{1}{2} \left(\mathbb{1} \pm \frac{\mathbf{\Omega}}{\Omega} \cdot \mathbf{\Sigma} \right) = \frac{1}{2} \left(\mathbb{1} \pm i\gamma^{1}\gamma^{2} \right)$$

 \mathbf{m}

1 m

$$p_{\pm}^{\mu} \equiv \left(p^0 \pm \frac{\Omega}{2}, p^1, p^2, p^3\right)$$

This holds at all orders in perturbation theory

$$\mathcal{R}_{\gamma} \equiv \frac{d^3 R}{p_T dp_T d\phi dy} = -\frac{n_{\rm B}(\omega_{\rm ph})}{(2\pi)^3} \operatorname{Im} \left\{ g_{\mu\nu} \, \Pi_{\rm R}^{\mu\nu}(p) \right\}$$

$$g_{\mu\nu}\Pi^{\mu\nu} = -4q_f^2 \mathcal{I} + q_f^2 \sum_{\sigma=\pm 1} \left[12\mathcal{J}_{\sigma} - 4\mathcal{K}_{\sigma}\right]$$

$$\mathcal{I} \equiv \int \frac{d^4k}{(2\pi)^4} \left[\frac{\epsilon_{ab}(k-p)^a k^b}{(k_+^2 - m^2)((k-p)_-^2 - m^2)} + \frac{\epsilon_{ab}k^a(k-p)^b}{(k_-^2 - m^2)((k-p)_+^2 - m^2)} \right]$$

$$\mathcal{J}_{\sigma} \equiv i \int \frac{d^4k}{(2\pi)^4} \frac{5[k_{\sigma} \cdot (k-p)_{\sigma}] - 2m^2}{(k_{\sigma}^2 - m^2)((k-p)_{\sigma}^2 - m^2)} \qquad \mathcal{K}_{\sigma} \equiv i \int \frac{d^4k}{(2\pi)^4} \frac{17[k_{\sigma} \cdot (k-p)_{-\sigma}] - 10m^2}{(k_{\sigma}^2 - m^2)((k-p)_{-\sigma}^2 - m^2)}$$

$$g_{\mu\nu}\Pi^{\mu\nu} = -4q_f^2 \mathcal{I} + q_f^2 \sum_{\sigma=\pm 1} \left[12\mathcal{J}_{\sigma} - 4\mathcal{K}_{\sigma} \right]$$
$$\mathcal{I} \equiv \int \frac{d^4k}{(2\pi)^4} \left[\frac{\epsilon_{ab}(k-p)^a}{(k_+^2 - m^2)((k-p)^2)} + \frac{\epsilon_{ab}k^a(k-p)^b}{(k_-^2 - m^2)((k-p)_+^2 - m^2)} \right]$$

 $\operatorname{Im}(z)$

$$\mathcal{J}_{\sigma} = \mathbf{i} \int \frac{d^3k}{(2\pi)^3} \mathbf{i} \oint_C \frac{dz}{2\pi \mathbf{i}} \frac{1}{e^{\beta z} + 1} \frac{5\left(z + \sigma\Omega/2\right)\left(z - \mathbf{i}\nu_l + \sigma\Omega/2\right) - 5\mathbf{k}\cdot(\mathbf{k} - \mathbf{p}) - 2m^2}{\left[\left(z + \sigma\Omega/2\right)^2 - E_k^2\right] \left[\left(z - \mathbf{i}\nu_l + \sigma\Omega/2\right)^2 - E_{kp}^2\right]}$$

$$\mathcal{K}_{\sigma} = \mathbf{i} \int \frac{d^3k}{(2\pi)^3} \mathbf{i} \oint_C \frac{dz}{2\pi \mathbf{i}} \frac{1}{e^{\beta z} + 1} \frac{17\left(z + \sigma\Omega/2\right)\left(z - \mathbf{i}\nu_l - \sigma\Omega/2\right) - 17\mathbf{k}\cdot(\mathbf{k} - \mathbf{p}) - 10m^2}{\left[\left(z + \sigma\Omega/2\right)^2 - E_k^2\right] \left[\left(z - \mathbf{i}\nu_l - \sigma\Omega/2\right)^2 - E_{kp}^2\right]}$$

$$\mathcal{J}_{\sigma} = i \int \frac{d^{3}k}{(2\pi)^{3}} i \oint_{C} \frac{dz}{2\pi i} \frac{1}{e^{\beta z} + 1} \frac{5(z + \sigma\Omega/2)(z - i\nu_{l} + \sigma\Omega/2) - 5\mathbf{k} \cdot (\mathbf{k} - \mathbf{p}) - 2m^{2}}{\left[(z + \sigma\Omega/2)^{2} - E_{k}^{2}\right] \left[(z - i\nu_{l} + \sigma\Omega/2)^{2} - E_{kp}^{2}\right]} \mathcal{K}_{\sigma} = i \int \frac{d^{3}k}{(2\pi)^{3}} i \oint_{C} \frac{dz}{2\pi i} \frac{1}{e^{\beta z} + 1} \frac{17(z + \sigma\Omega/2)(z - i\nu_{l} - \sigma\Omega/2) - 1}{\left[(z + \sigma\Omega/2)^{2} - E_{k}^{2}\right] \left[(z - i\nu_{l} - \sigma\Omega/2) - \frac{1}{\sigma\Omega/2} + \frac{10m^{2}}{\sigma\Omega/2}\right]} \mathcal{K}_{\sigma}$$

Although the angular velocity defines a preferred direction in space, it does not break Lorentz symmetry in the sense of separating spatial momenta, as happens in the case of a magnetic field.

This is because the fermion propagator only experiences a shift in energy.

$$S(p) = \frac{\not{p}_{+} + m_{f}}{p_{+}^{2} - m_{f}^{2} + i\epsilon} \mathcal{O}^{(+)} + \frac{\not{p}_{-} + m_{f}}{p_{-}^{2} - m_{f}^{2} + i\epsilon} \mathcal{O}^{(-)}$$

$$p_{\pm}^{\mu} \equiv \left(p^0 \pm \frac{\Omega}{2}, p^1, p^2, p^3\right)$$

$$\mathcal{J}_{\sigma} = i \int \frac{d^{3}k}{(2\pi)^{3}} i \oint_{C} \frac{dz}{2\pi i} \frac{1}{e^{\beta z} + 1} \frac{5(z + \sigma\Omega/2)(z - i\nu_{l} + \sigma\Omega/2) - 5\mathbf{k} \cdot (\mathbf{k} - \mathbf{p}) - 2m^{2}}{\left[(z + \sigma\Omega/2)^{2} - E_{k}^{2}\right] \left[(z - i\nu_{l} + \sigma\Omega/2)^{2} - E_{kp}^{2}\right]} \mathcal{K}_{\sigma} = i \int \frac{d^{3}k}{(2\pi)^{3}} i \oint_{C} \frac{dz}{2\pi i} \frac{1}{e^{\beta z} + 1} \frac{17(z + \sigma\Omega/2)(z - i\nu_{l} - \sigma\Omega/2) - 17\mathbf{k} \cdot (\mathbf{k} - \mathbf{p}) - 10m^{2}}{\left[(z + \sigma\Omega/2)^{2} - E_{k}^{2}\right] \left[(z - i\nu_{l} - \sigma\Omega/2) - 2m^{2}\right]}$$

Although the angular velocity defines a preferred direction in space, it does not break Lorentz symmetry in the sense of separating spatial momenta, as happens in the case of a magnetic field.

This is because the fermion propagator only experiences a shift in energy.

$$S(p) = \frac{\not{p}_{+} + m_{f}}{p_{+}^{2} - m_{f}^{2} + i\epsilon} \mathcal{O}^{(+)} + \frac{\not{p}_{-} + m_{f}}{p_{-}^{2} - m_{f}^{2} + i\epsilon} \mathcal{O}^{(-)}$$

As a result, the yield remains angle-independent, and the flow coefficients are unaffected by this mechanism.

$$v_n = \frac{1}{\mathcal{R}_0} \int_0^{2\pi} d\phi \cos(n\phi) \frac{d^3 R}{p_T dp_T d\phi dy}$$

$$\lim_{\epsilon \to 0} \frac{1}{(A + i\epsilon)(B + i\epsilon)} = P.V.\left(\frac{1}{AB}\right) - i\pi \frac{\delta(A)}{B - A} + i\pi \frac{\delta(B)}{B - A}$$

$$\lim_{\epsilon \to 0} \frac{1}{(A + i\epsilon)(B + i\epsilon)} = P.V. \qquad R \end{pmatrix} - i\pi \frac{\delta(A)}{B - A} + i\pi \frac{\delta(B)}{B - A}$$
$$\operatorname{Im} \left[\mathcal{J}_{\sigma}\right] = -\frac{3m^{2}\pi}{4\omega_{\mathrm{ph}}(2\pi)^{2}} \sum_{s=\pm 1} \int_{m}^{\infty} dE \left\{ \left(n_{\mathrm{F}} \left[\beta \left(sE - \frac{\sigma\Omega}{2} \right) \right] - n_{\mathrm{F}} \left[\beta \left(sE - \omega_{\mathrm{ph}} - \frac{\sigma\Omega}{2} \right) \right] \right) \Theta \left[E - s\omega_{\mathrm{ph}} - m \right] - \left(n_{\mathrm{F}} \left[\beta \left(sE - \frac{\sigma\Omega}{2} \right) \right] - n_{\mathrm{F}} \left[\beta \left(-sE + \omega_{\mathrm{ph}} - \frac{\sigma\Omega}{2} \right) \right] \right) \Theta \left[-E + s\omega_{\mathrm{ph}} - m \right] \right\}$$

$$\operatorname{Im}\left[\mathcal{K}_{\sigma}\right] = \frac{\pi}{4\omega_{\rm ph}(2\pi)^{2}} \left(\omega_{\rm ph}^{2} - (\omega_{\rm ph} + \sigma\Omega)^{2} + 7m^{2}\right)$$

$$\times \sum_{s=\pm 1} \int_{m}^{\infty} dE \left\{ \left(n_{\rm F} \left[\beta \left(sE - \sigma \frac{\Omega}{2} \right) \right] + n_{\rm F} \left[\beta (sE - \omega_{\rm ph} - \sigma \frac{\Omega}{2}) \right] \right) \Theta \left[E - s \left(\omega_{\rm ph} + \sigma\Omega \right) - m \right] - \left(n_{\rm F} \left[\beta \left(-sE - \sigma \frac{\Omega}{2} \right) \right] + n_{\rm F} \left[\beta \left(-sE - \omega_{\rm ph} - \sigma \frac{\Omega}{2} \right) \right] \right) \Theta \left[-E - s \left(\omega_{\rm ph} + \sigma\Omega \right) - m \right] \right\}$$

$$\Pi_R^{\mu\nu}(p^0 = \omega_{\rm ph}, \mathbf{p}) = \Pi^{\mu\nu}(i\nu_n \to \omega_{\rm ph} + i\epsilon, \mathbf{p})$$

PHYSICAL REVIEW C 92, 014906 (2015)

Vorticity and hydrodynamic helicity in heavy-ion collisions in the hadron-string dynamics model

Oleg Teryaev^{*} Joint Institute for Nuclear Research, 141980 Dubna (Moscow region), Russia and National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), Kashirskoe Shosse 31, 115409 Moscow, Russia

> Rahim Usubov[†] Joint Institute for Nuclear Research, 141980 Dubna (Moscow region), Russia (Received 28 January 2015; revised manuscript received 23 April 2015; published 13 July 2015)

Vorticity in heavy-ion collisions at the JINR Nuclotron-based Ion Collider fAcility

PHYSICAL REVIEW C 95, 054915 (2017)

Yu. B. Ivanov^{1,2,*} and A. A. Soldatov^{2,†} ¹National Research Centre "Kurchatov Institute", Moscow 123182, Russia ²National Research Nuclear University "MEPhI" (Moscow Engineering Physics Institute), Moscow 115409, Russia (Received 10 January 2017; published 31 May 2017)

$$\Pi_R^{\mu\nu}(p^0 = \omega_{\rm ph}, \mathbf{p}) = \Pi^{\mu\nu}(\mathrm{i}\nu_n \to \omega_{\rm ph} + \mathrm{i}\epsilon, \mathbf{p})$$

$$\Pi_R^{\mu\nu}(p^0 = \omega_{\rm ph}, \mathbf{p}) = \Pi^{\mu\nu}(\mathrm{i}\nu_n \to \omega_{\rm ph} + \mathrm{i}\epsilon, \mathbf{p})$$

The yield is affected by the parent particle's mass, and the threshold shifts accordingly

The yield is affected by the parent particle's mass, and the threshold shifts accordingly

Conclusions and future work

Under the rigid rotation approximation, vorticity enters as an effective chemical potential.

Within the same approximation, rapid rotation can suppress low-energy photon production.

For phenomenological values of angular vorticity, the deviations from the non-rotating case are almost negligible.

The rigid rotation approximation should be relaxed to capture more realistic dynamics.

The system's geometry should be generalized beyond the cylindrical configuration.