
f -mode oscillations of strange stars obtained
from the vector MIT bag model

[arXiv: 2412.05752]
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1. Motivation A: High values of c2
s

Equations of state for QCD matter
[Annala et al., Nature Phys. 2020]

José C. Jiménez (CBPF) f -modes of vMIT stars 3 / 24



1. Motivation B: Sources of GWs in Binary Systems

[Inspiral LIGO GW170817 event]
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1. Motivation C: Bodmer-Witten Hypothesis

This hypothesis works when

E(uds)/A = ε/nB < 930 MeV,

in vacuum (p = 0 and T = 0).

[F. Weber, 2005]
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1. Motivation D: Strange vs Neutron Stars

[F. Weber, 2012]
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1. Motivation E: Strange vs Neutron Star Signals

[Bauswein et al., arXiv: 0910.5169.]
See also 1408.0929, 2107.13997, 2204.11034, 2306.12326
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1. Motivation F: Non-radial f mode

[Pratten et al., arXiv: 1905.00817]
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2. Thermodynamics of the vMIT model

The corresponding Lagrangian is given by

L = LMIT + LV ,

where
LMIT =

∑
i

{ψ̄i [iγ
µ∂µ −mi ]ψi − B}Θ(ψ̄iψi ),

LV =
∑
i

{ψ̄igiV (γµVµ)ψi −
1

2
m2

VV
µVµ}Θ(ψ̄iψi ),

Notice that

Θ(ψ̄iψi ) assures that the quarks exist only confined to the bag.

Unlike the ω meson of quantum hadrodynamics, the V µ field does
not necessarily correspond to any real meson field.
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2. Thermodynamics of the vMIT model

After applying the mean-field approximation, one obtains (with
V0 = 〈Vµ〉δµ0 ):

Ei =
√

m2
i + k2

i + giVV0

m2
VV0 =

∑
i

giV ni ,

ni = γi
k3
f

3π2

where γi = 6 = (3× 2).

Since we work at T = 0, the energies ‘Ei ’ are also the chemical
potentials (µf ) for each flavor.
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2. Thermodynamics of the vMIT model

One can construct the equation of state (EoS) for our quark system
in the mean field approximation by constructing the Hamiltonian as

H = −〈L〉.

One obtains

εi =
γi

2π2

∫ kf

0
Ei k

2dk,

ε =
∑
i

εi + B − 1

2
m2

VV
2
0 ,

wherethe last term of equation is absent in current literature being
crucial to kept the thermodynamic consistency.
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2. Thermodynamics of the vMIT model

We fix the vMIT free parameters as follows:

We redefine GV ≡ (guV /mV )2 and define XV ≡ (gsV /guV ).

We use a universal coupling for XV = 1.0, producing more massive
stars for the same value of GV .

Besides mu = md = 4 MeV, ms = 95 MeV, and the values of GV and
the bag are not fully independent.
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2. Thermodynamics of the vMIT model

 0

 100

 200

 300

 400

 500

 200  400  600  800  1000  1200

p
  
(M

e
V

/f
m

3
)

ε  (MeV/fm
3
) 

GV=0.30
GV=0.24
GV=0.18

 0.36

 0.4

 0.44

 0.48

 0.52

 0.56

 0.3  0.5  0.7  0.9  1.1  1.3
v

s
2

n  (fm
-3

)

GV=0.30
GV=0.24
GV=0.18

EoS (left) and the square of the speed of sound (right).
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3. Hydrostatic Structure of vMIT stars
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3. Oscillation equations: The radial case

We use the formalism of [Gondek et al., 1997] given by

dξ

dr
= −1

r

(
3ξ +

∆P

ΓP

)
− dP

dr

ξ

(P + ε)
,

and

d∆P

dr
= ξ

{
ω2eλ−ν(P + ε)r − 4

dP

dr

}
+

ξ

{(
dP

dr

)2 r

(P + ε)
− 8πeλ(P + ε)Pr

}
+

∆P

{
dP

dr

1

P + ε
− 4π(P + ε)reλ

}
,

where ω is the oscillation frequency.
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Results: Radial f -mode frequencies
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3. Oscillation equations: The non-radial case
*Somewhat similar to the radial case, one can start by applying polar
non-radial perturbations to a non-rotating perfect fluid star giving a set of
coupled equations where the perturbed metric tensor reads

ds2 = −eν(1 + r `H0Y
`
me

iωt)dt2 − 2iωr `+1H1Y
`
me

iωtdtdr

+eλ(1− r `H0Y
`
me

iωt)dr2

+r2(1− r `KY `
me

iωt)(dθ2 + sin2 θdφ2),

where H0,H1,K are metric functions and ω is the angular frequency.
*The polar perturbations in the position of the fluid elements are given by
the following Lagrangian displacements

ξr = r `−1e−λ/2WY `
me

iωt ,

ξθ = −r `−2V ∂θY
`
me

iωt ,

ξφ = −r `(r sin θ)−2V ∂φY
`
me

iωt ,

where W and V are fluid perturbation functions.
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Non-radial oscillation equations: Inside

H ′1 = −r−1[`+ 1 + 2meλ/r + 4πr2eλ(p − ε)]H1

+eλr−1 [H0 + K − 16π(ε+ p)V ] ,

K ′ = r−1H0 +
`(`+ 1)

2r
H1 −

[
(`+ 1)

r
− ν ′

2

]
K

−8π(ε+ p)eλ/2r−1W ,

W ′ = −(`+ 1)r−1W + reλ/2[e−ν/2γ−1p−1X

−`(`+ 1)r−2V + 1
2H0 + K ] ,

X ′ = ... .
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Non-radial oscillation equations: Outside
Outside the star, i.e. the vacuum, m = M, the perturbations equations on
the fluid are null and the differential equations reduce to the Zerilli
equations:

d2Z

dr∗2
= [VZ (r∗)− ω2]Z ,

where Z (r∗) and dZ (r∗)/dr∗ are related to the metric perturbations H0(r)
and K (r). We can also note the “tortoise” coordinate given by

r∗ = r + 2M ln(r/(2M)− 1),

and the effective potential VZ (r∗) is given by

VZ (r∗) =
(1− 2M/r)

r3(nr + 3M)2
f (r),

where
f (r) = [2n2(n + 1)r3 + 6n2Mr2 + 18nM2r + 18M3]

with n = (l − 1)(l + 2)/2.
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Results: Non-radial f frequencies
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Results: Proposed Universal Relation

Inspired by (Benhar 2004), we realize that our non-radial f -mode can
be fitted by the following linear expression:

f = a + b · (M/R3)1/2,

where a is given in kHz and b in km × kHz for masses above 0.7 M�.

We obtain a = +0.142, +0.107, and +0.009 kHz, b = 41.1, 42.3,
and 44.2 km × kHz for GV = 0.30, 0.24 and 0.18 fm2 respectively.

We notice that ‘b’ is in agreement with those found in the literature.

Besides, ‘b’ seems very similar for hadron and quark stars.

However, ‘a’ for vMIT stars is much closer to zero than those of
hadron stars.
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Proposed Universal Relation
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5. Summary and Outlook

We used the vector MIT model to explore the effect of the vector field
exchange (repulsive) term, on the mass and radius of strange quark
stars satisfyig data from HESS J1731-347 and PSR J0437-4715.

The fundamental mode of the radial oscillations show that an
increasing GV has a stabilizing property for stars in the range (1.2 -
2.0)M� but for stars below 1.2 M� we have the opposite effect.

The non-radial f mode frequencies were also calculated for which its
gravitational wave frequency is restricted to (1.6 - 1.8) kHz for high
mass stars and to (1.5 - 1.6) kHz for low mass stars.

A linear universal relation between the f -mode and the square root of
the average density expressed was found for all EoS studied.

We are currently exploring the effects of strong magnetic fields on
these universal relations for vMIT stars, until now only explored for
NSs.
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