Aspects of Topology From Dirac Equation and Supersymmetry

Alfredo Raya, UMSNH

9th Conf. on Chirality, Vorticity and Magnetic Fields in Quantum Matter, São Paulo, July 2025

Collaborators

Juan Domingo García & Erick Alexis García Sánchez

Table of contents

From Classical to Quantum Mechanics

O2 Jackiw-Rebbi model

SSH, Topoelectrical circuits and all that

O3 DMS oscillator

Non-minimal coupling in Dirac equation

O4 Topology and topological index

Where do we see the topology?

Charged particles in Magnetic Fields

From Classical to Quantum Mechanics

Why electromagnetic interactions?

- Foundational to understanding from cyclotron motion to quantum spin dynamics
- Gauge invariance and the cornerstone of fundamental interactions
- Classical trajectories, QHE, Superconductivity, Landau levels, etc

Classical mechanics

Lorentz force Free particle lagrangian $\mathbf{F} = q\mathbf{E} + q\mathbf{v} \times \mathbf{B}$ $L_0=rac{1}{2}m{f v}^2$ Magnetic field Coupling to e.m. potentials $\mathbf{B} = \nabla \times \mathbf{A}$ $L=rac{1}{2}m{f v}^2+q{f v}\cdot{f A}-q\phi$ Gauge invariance $\mathbf{A}
ightarrow \mathbf{A} +
abla \chi$

Quantum mechanics

Landau levels

Aspect	Non-Relativistic	Relativistic
Gauge Used	Landau Gauge (${f A}=-By\hat{x}$)	Same
Hamiltonian	$rac{1}{2m}(\mathbf{p}-q\mathbf{A})^2$	$H=\gamma^0\left[oldsymbol{\gamma}\cdot(\mathbf{p}-q\mathbf{A})+mc ight]$
Energy Levels	$E_n=\hbar\omega_c\left(n+rac{1}{2} ight)$	$egin{aligned} E_n^\pm = \ \pm \sqrt{m^2 c^4 + 2n \hbar \omega_c m c^2 + \hbar \omega_c s} \end{aligned}$
Physical Insight	Quantization in the xy -plane; free motion in z - direction.	Spin and relativistic effects included.

SSH, Topoelectrical circuits and all that

 $\mathbf{02}$

- Fermion field interacting with a spatially varying scalar field.
- Zero modes
- Topological system: Solitons or domain walls
- Hamiltonian

$$H=\gamma^0\left[oldsymbol{\gamma}\cdot\mathbf{p}+m(x)
ight]$$

Phys. Rev. D13(1976) 3398

- Topologically protected zero modes at domain walls
- Fractionalization of charges

- Topological insulators
- Gapless modes at interfaces where the bulk topological invariants change.

• SSH model for polyacetylene chains

• 1D-TB model

$$H=\sum_{n}\left[t_{1}c_{n}^{\dagger}c_{n+1}+t_{2}c_{n+1}^{\dagger}c_{n}
ight]$$

- Hosts topological edge states when the hopping amplitudes are reversed.
- The zero-energy edge states correspond to the JR zero modes.

$$\begin{array}{c|c} t_1 & t_2 \\ \hline \\ t_1 > t_2 \\ \hline \\ t_1 > t_2 \end{array}$$

Phys. Rev. D13(1976) 3398 Phys. Rev. B22(1980) 2099

- Topoelectric circuits
- Topological phases using classical electrical components
- Domain walls correspond to impedance mismatches
- Edge modes manifest as localized resonances in circuit voltage/current distributions

Phys. Rev. D13(1976) 3398 Rev. Mex. Fís. 70, 040501 (2024)

- Topoelectric circuits
- Topological phases using classical electrical components
- Domain walls correspond to impedance mismatches
- Edge modes manifest as localized resonances in circuit voltage/current distributions

Phys. Rev. D13(1976) 3398 Rev. Mex. Fís. 70, 040501 (2024)

The Jackiw-Rebbi model has a compelling analogy with electrostatic systems. Consider the following comparison:

Feature	Jackiw-Rebbi Model	Electrostatic System
Domain Wall	Spatially varying mass term	Charged surface or potential interface
Zero-Energy Modes	Localized solutions at	Bound charges or fields localized at boundaries
Fractionalization	Fractional charges induced at solitons	Partial charges induced on conductors
Topological Nature	Protected states from topology	Surface integrals of electric flux (Gauss's law)

DMS oscillator

03

Non-minimal coupling in the Dirac equation

Dirac Oscillator

• Dirac Oscillator

$$H=ec{lpha}\cdotec{p}+eta m+rac{1}{2}m\omega^2x^2$$

-

$$E_n=\pm\sqrt{m^2+2\hbar\omega\left(n+rac{1}{2}
ight)}$$

Dirac-Moshinsky-Szczepaniac Oscillator

DMS Oscillator

 $ec{p}
ightarrowec{p}-i\gamma^5m\omega x$

$$H=ig(ec{lpha}\cdot(ec{p}-i\gamma^5m\omega x)ig)+eta m+rac{1}{2}m\omega^2x^2ig)$$

J. Phys. A: Math. Gen. 22 L817 (1989)

Dirac-Moshinsky-Szczepaniac Oscillator

- Spin-orbit coupling
- Energy spectrum modification
- Position-spin
- Symmetry breaking
- Systems (graphene) with position dependent mass

J. Phys. A: Math. Gen. 22 L817 (1989)

Topology and topological index

Where do we see topology?

SUSY-DMS oscillator

• 1D DMS oscillator

$$\hat{H}_D \Psi = \begin{bmatrix} \sigma_y \hat{p} + \sigma_x \left(\frac{E_x}{V_0}\right) \end{bmatrix} \Psi = \mathcal{E} \Psi.$$

$$\Psi = \begin{pmatrix} \psi_1 \\ \psi_2 \end{pmatrix}$$
Wavefunction

$$\hat{H}_i \psi_i = \left(\frac{\partial^2}{\partial x^2} + U_i(x)\right) \psi_i(x) = 0$$

$$U_{1,2}(x) = \begin{bmatrix} -\left(\frac{E_x}{V_0}\right)^2 + \mathcal{E}^2 \pm \frac{1}{V_0} \frac{dE_x}{dx} \end{bmatrix}$$
G. GONZÁLEZ, Rev. Mex. Fig. E 65 (2019) 30-33

SUSY-DMS oscillator

 $\psi_0^\pm = C_\pm e^{\mp\int dx W(x)}$ Zero modes

- Not normalizable simultaneously
 - One additional zero mode in the spectrum of H_0
- Witten index preserved
 - Unbroken SUSY
- All topological indexes of the model can be expressed in terms of this one
 - Sak phase, winding numbers, and so on

SUSY-DMS oscillator

Zero modes in different potential with kink behavior

Spin-orbit interpretation

Connection with topological phases of the SSH model

Connection with topoelectric circuits

