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Journeys into Theoretical Physics 2025
Saturday Exam

e Write your name on each page

e Number each page used to solve a given problem as 1/n,2/n,...,n/n where n is the number
of pages used to solve that problem

e Do not solve more than one problem per page — these exams will be split apart and graded
by different people.

e Problem 1 (Some Frustration in the Ising Model): 25%
e Problem 2 (Quantum Amplification): 25%

e Problem 3 (Gravitation, springs, and integrability): 25%
e Problem 4 (Trajectories in Cosmic Shower): 25%

Suggestion: Try to first do the easiest parts of each exercise, and then try to do the harder
parts on as many exercises as possible. This is a difficult exam, so do not be discouraged if you
get stuck on an exercise.
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Figure 1: Square lattice example for L = 5. We have L? dynamical spins (the crosses) and 4L boundary spins
fixed to be pointing up (the pluses). We sum over all vertical and horizontal links when computing the energy,
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1 Some Frustration in the Ising Model

Consider the two dimensional Ising model on a square two dimensional grid with L x L dynamical
spins plus 4L frozen spins at the boundary. At each vertex with coordinates = = (i, j) we have
a spin o, which can take values +1 (up spin) or —1 (down spin). We fix the spins in the lattice
boundary, that is in the first row, last row, first column and last column to be pointing up,

oy, = +1, for x=(0,i),(L+1,7),(i,0)or (i, L+ 1),
see figure. Then the partition function is the sum over all possible spin configurations,
Z = Z exp(—0H), H= —JZ%%
{ox=%1} (z,y)

In the first sum we have a sum over all possible bulk dynamical spin configurations. In the energy
functional H, the sum is over all neighbooring x and y connected by an edge, see figure and caption.
Note that there are edges between bulk points and between bulk and boundary points but there
are no links between boundary points’

Ferromagnetic at Low and High Temperature
Consider first the ferromagnetic case J > 0.

1. [2pt] In the low temperature (8 — oo) limit the ground state configuration dominates. Show
that in this limit
7 ~aet (1)

1Since those spins are frozen, the contribution from those edges would lead to an immaterial constant anyway.



witha=1and A =2JL(L+1).
Hint: How many edges are there?
2. [2pt] Expanding further in this limit we get the first correction
Z ~aePt 4 d P 4+
What is @’ and A’ in the first subleading term in the low temperature expansion?

3. [2pt] What is the partition function Z equal to in the high temperature limit 8 — 0.

4. [2pt] Explain why the first small beta correction in this limit is of order 52
Hint: You don’t need to compute it; just explain why the linear term of O(f) vanishes.

5. [4pt] What is the leading behavior of the magnetization

1
m:ﬁ Z (02)

xebulk
in the two limits
f—o00 and [ —0.

You can state the result without computation if you explain it physically.

Anti-ferromagnetic at Low Temperature

Consider now the anti-ferromagnetic case J < 0.

6. [3pt] What is the leading term in the low temperature expansion (1) for L = 1?7 What about
L=27
Hint: Compute the full partition function for L = 1 and read the next sentence before
attacking L = 2.

Through brute force enumeration, we find a = 1,7,1,8,1,... for L = 1,2,3,4,5,... respectively.
We see that the low temperature ground state is degenerate for some L’s but not for others.

7. [3pt] Come up with a simple guess for a and A for L odd in (1) by identifying the single
ground state configuration for L odd.
Hint: That configuration has 2L — 2 edges connecting spins with the same sign.

8. [3pt] Explain first why this is a very hard problem for general even L compared with the same
problem with periodic boundary conditions and even L. What would a and A be for periodic
boundary conditions (i.e. o;; = 0;41; = 0;,+1)? Explain why the anti-ferromagnetic
periodic boundary condition problem would be more intricate for L odd as far as degeneracy
counting goes.

9. [4pt] Argue that the thermodynamical value of the free energy per site

B—00 L—00

1
f=—lim lim mlogZ

equals

f=2J.
with our fixed opoundary = +1 boundary conditions. What would it be for periodic boundary
conditions?



2  Quantum Amplification

Suppose we have a state

[¥) = Zw@')m, (2)

where all amplitudes (i) are real numbers of similar magnitude; N is large’. We want to act
on this state with a bunch of unitary transformations to amplify one of the states. That is,
after acting with a bunch of unitary transformations, the state takes again the same form but
the amplitude v (7) multiplying one of the states |i) should now stand out compared to all other
states. This problem is about this amplification process. Two key processes will play a role as
illustrated in figure 3. One flips the sign of the ket we want to amplify so that ¥ (i) — —(i); the
other reflects all amplitudes (i) around their mean value. As illustrated in this figure, combining
these two operations can nicely amplify a state. We will see that for large N we need to act
sequentially O(\/N ) times with these two transformations on a state to efficiently amplify it so
that the probability of measuring that state is above 50%.

Oracle O Diffusion D
= Flip sign of target state = Reflection Around Average
Amplitude Amplitude Amplitude
Average  RoaulllEkceai.cccmnmnssssannnnnnns
Amplitude
Average Average
Amplitude Amplitude

State i State i State i

Target state to amplify

Figure 2: The Oracle Operator flips the sign of a target state (in the figure we took the state to be amplified
to be the 4th in a list of twelve states). The Diffusion Operator reflects all amplitudes around the average of the
amplitudes. We will see in this problem that both transformations are nice unitary transformation. What is also
true (and very important for practical applications) but we will not see in this problem is that they can be realized
by combining local unitary transformations.

Suppose that we have a normalized state, which is a linear combination of some basis states |i)
where ¢ = 1...N with the same amplitude. In other words, we start with the initial state

N
1
Sinitial) = —=11). 3
We want to amplify the amplitude multiplying |1) say. The oracle operator O is defined as
O|1) = —|1), Oliy = i) ifi > 1,

2|3) could be a complete set of states of a spin-1/2 chain of length L, e.g., in which case N = 2°.
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and the diffusion operator D is defined as
5 N
Dli) = —|i>+NZ|J'> (4)
j=1

1. [3pt] Show that the oracle and the diffusion operator are unitary operators.

2. [2pt] What happens to the average amplitude ¢ = + >~ (i) when we flip the target state
in |Siitia1) by acting on the state with the oracle operator @7 You only need to answer it
qualitatively. Does it get bigger or smaller or remain the same?

3. [3pt] Show that the diffusion operator does act like a reflection around average operator;
namely show that upon acting with D on a state the amplitudes of the resulting states are
related to the original amplitudes by a reflection around the mean amplitude value ). How
does D affect the mean amplitude of a state?

After repeated action of oracles and diffusion we have an intermediate state
V/ 2 C ~
|Sintermediate> - 1— C |]-> + —1 Z |7'> (5>

where C' is real and positive.

4. [3pt] Show that the state is properly normalized. If the probability of finding the state |1)
in the intermediate state is an order one value still smaller than 50%, what can you say
about C7

5. [5pt] What is the state after the operator O acts on it? At large N what is the approximate
mean amplitude of the state |Sintermediate)? What about of the state O|sintermediate)

6. [5pt] Now we apply the diffusion to this state to get DO|Sintermediate). Again at large N,
what is the approximate change in the amplitude of the target state |1) from |Sintermediate)
t0 DO |Sintermediate) 7 (You should find that under the conditions of problem 4 it increases by
at least v/2 / VN .) What is the approximate change in the amplitude of the other states?

7. [4pt] Show that there exists a number M less than v/N /2 such that after M repetitions of
the oracle plus diffusion loop the amplitude of the target state |1) will exceed 1/4/2 and thus
the probability of measuring this state will be bigger than 50%.

These ideas are used in quantum computation to create search algorithms of v/ /N complexity
beating their classical counterparts which scale like N.



3 Gravitation, springs, and integrability

Central force motion is ubiquitous in physics, governed by potentials of the form V(Z) = —k||Z||"
for # € R3. Motion of a particle in such a potential is described by the Hamiltonian

o L L LAl im
H(z,p) = 5llP" + V(@) = 57— — k||| (6)
This motion can be bound, as in orbits, or unbound, as in the deflection of a passing particle.
Bertrand’s theorem states that of the possible central force laws, only those associated with grav-
itation (n = —1) and harmonic springs (n = 2) produce bound motion with closed orbits. In this
problem we will see how this property arises from the integrability of the gravitational and Hookian
systems. Integrability is a concept that arises often in the study of many-body quantum systems
with extensively many conserved quantities.
Useful identities for this problem:

(@xb)- (Exd)=(@-&)(b-d)— (@-d)b-7) (7)
a-(bxd)=(@xb)-c (8)
ax(bxd&) = (@ -ab— (@ b (9)

1. [3pt] Show explicitly that the three components of angular momentum L=7x p and the
energy are conserved. What are the symmetries associated with these conserved quantities?

Hint: a quantity f(Z,p) is conserved in Hamiltonian dynamics if its Poisson bracket {f, H}
with the Hamiltonian is zero, where the Poisson bracket is defined by

2292 1
Vot =5z 55 o5 oz (10)

2. [3pt] What is the dimension of the phase space for this system? What is the dimension of
the phase space consistent with setting the angular momentum and the energy to specific
values? Describe the geometric relationship between the angular momentum L and the
available phase space.

3. [3pt] Define the Runge—Lenz vector A = ' x L — kmi, where 2 = /| z|| is the unit vector
in the 7 direction. Show that the Runge-Lenz vector is conserved in gravitational systems
with n = —1.

4. Additional conserved quantities are only useful if they are independent from each other
(consider the conserved quantities H?, H?, ...).

(a) [1pt] If the Runge-Lenz vector were independent from the angular momentum and
energy, what is the dimension of the phase space consistent with fixing all three?

(b) [1pt] What is A - L equal to?
(c) [2pt] Show that A - A produces constraints between A, L, and the energy.

(d) [1pt] Given the above, what is the actual dimension of the phase space region consistent
with fixing all three conserved quantities? Relate this to the fact that bound orbits are
closed for gravitational systems.



. [3pt] Derive the path of motion in terms of the magnitudes of A and L, the radius r = ||Z]|,
and 6 the angle between A and 7.

Hint: in this ‘integrable’ system, equations of motion can be solved without integrating
anything. Start with A - 7.

. [2pt] Give a geometric interpretation of the Runge-Lenz vector.

. [2pt] In a system with a potential different from n = —1, the Runge-Lenz vector is not
conserved. How does it evolve with time? What are the implications for orbits in a system
with n only slightly different from —17

. [4pt] Now define the 3 x 3 tensor A;; = %pipj — kma;x;. Show that for a Hookian spring
system (n = 2) A is conserved. Show that Tr A, Tr A%, and AL imply constraints on the
components of A. What is the dimension of the phase space consistent with fixing the tensor
A, E, and the energy?



4 'Trajectories in Cosmic Shower

Figure 3: The Earth has a magnetic field which can be approximated by a magnetic dipole created by a current
loop with current J(x) in the plane of the equator.

In a cosmic shower, a negatively charged pion decays into a muon and a neutrino after entering
the Earth?s atmosphere.

1. [2pt] The negatively charged pion has rest mass M, and charge e, and is moving with
relativistic velocity v, in the direction of the Earth when it decays. If its half-life at rest is
T, what is its half-life when moving with velocity v,?

2. [3pt] If the muon has rest mass M, and the neutrino has rest mass zero, what is the velocity
of the pion v, if the muon has zero velocity at the moment the pion decays?

The Earth has a magnetic field which can be approximated by a magnetic dipole created by a
current loop with current J(z).

3. [4pt] Use B=V x A and V x B = “Z.J to derive the vector potential A(z) in terms of J(z)
in the gauge VA = 0.
Hint: Useful formula: -& -4 |z|7' = —476%(x). (4 points)

dzJ dxI

4. [2pt] If J(z) is approximated by a circular current loop in the plane of the equator as in the
figure, draw a cartoon of the magnetic field lines around the earth.

5. [4pt] If the current loop has radius R, find the value of the B field on the axis perpendicular
to the loop that goes through the North and South Poles as a function of the distance from
the center of the loop.

Hint: At the center of the loop you should find |B| = 27|J|/cR.



In a gravitational field g,,,(z) and electromagnetic field described by the vector potential A,,(z),
a relativistic spin-zero particle of charge e and rest mass M has the Lagrangian

dz™ dx" dz™
L= eyl 550+ o)

where m,n = 0 to 3.

6. [5pt] Compute the relativistic equations of motion coming from extremizing the Lagrangian
(Euler-Lagrange equations) and show that they imply the expected non-relativistic equations
in the limit where g,,, is constant and v < c.

7. [2pt] Describe in words the trajectories of the muon and neutrino depending on the latitude
in which they enter the Earth’s atmosphere.

8. [3pt] Using the fact that the Lagrangian is the kinetic energy minus the potential energy,
add an appropriate term to the Lagrangian depending on the spin of the particle S and the
electromagnetic field. Describe in words how this term affects the trajectories of the muon
and neutrino which are entering at zero degrees latitude (i.e. above the North Pole).



