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Lecture 1

Bose-Einstein condensation and superfluidity

This course on two-dimensional quantum gases, given at the ICTP São Paulo fourth
school on light and cold atoms, is organized into three lectures. The first introductory lec-
ture addresses Bose-Einstein condensation in an ideal gas, the effect of interactions in the
weakly interacting limit, Gross-Pitaevskii equation and its hydrodynamic formulation, as
well as superfluidity. The second lecture is devoted to the main features of two-dimensional
quantum gases: importance of the interactions, enhanced phase fluctuations and the emer-
gence of a quasi long-range order, superfluidity through the Berezinskii-Kosterlitz-Thouless
mechanism, scaling symmetry. The third lecture has taken the form of a seminar on fast
rotating quasi two-dimensional Bose gases and thermal melting of the vortex lattice.

I would like to thank the organizers of the school, Raul Celistrino, Patricia Castilho,
Mathilde Hugbart and Romain Bachelard for this nice opportunity to prepare this lecture
series and encourage me to prepare lecture notes. I also thank ICTP SAIFR for their
efficient help during the school, and the attendees for their active participation, questions
and feedback. The slides accompanying these notes can be found on the school website:
https://www.ictp-saifr.org/slca2025/

The present lecture is devoted to Bose-Einstein condensation and superfluidity. To
prepare the lecture, I have mostly used my lecture notes prepared for Master program
ICFP at ENS and the lectures given by Jean Dalibard at Collège de France during the
academic year 2015-2016 [1], which are available online, in French and in English. In
addition, the following general references may be useful:

1. F. Dalfovo, S. Giorgini, L. Pitaevskii and S. Stringari, Theory of Bose-Einstein
condensation in trapped gases, Rev. Mod. Phys. 71, 463 (1999) [2];

2. Y. Castin, Bose–Einstein condensates in atomic gases: simple theoretical results,
Proceedings of Les Houches LXXII Summer School [3];

3. C. J. Pethick and H. Smith, Bose–Einstein Condensation in Dilute Gases, Second
edition, Cambridge (2008) [4];

4. Lev Pitaevskii and Sandro Stringari, Bose-Einstein condensation, Oxford (2003) [5];

5. Lev Pitaevskii and Sandro Stringari, Bose-Einstein Condensation and Superfluidity,
Oxford (2016) [6].
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1 Reminder: BEC in an ideal gas

Let us first examine the possibility for Bose-Einstein condensation (BEC) for a gas of non
interacting bosons. BEC will occur if the number of particles in excited states saturates,
i.e. if the total number of particles N exceeds Nmax

exc (T ), the maximum number of particles
in the excited states at a given temperature T .

1.1 BEC: a saturation of the excited states

We describe the bosonic gas in the grand canonical ensemble and assume that the ground
state of the single-particle Hamiltonian is non degenerate. The average energy is fixed by
the temperature T and the average atom number N is fixed by the chemical potential µ.
The average occupation of each state j of energy Ej , with E0 the energy of the ground
state, is given by

nj =
1

e(Ej−µ)/kT − 1
, (1)

where k is Boltzmann’s constant. nj ≥ 0, which imposes µ < Ej for all j, which is fulfilled
as soon as µ < E0. The occupation in the ground state is

n0 =
1

eβ(E0−µ) − 1
=

z

1− z
(2)

where β = 1/(kT ) and we have introduced the fugacity

z = eβ(µ−E0) < 1. (3)

Using z, we can also write nj as

nj =
1

z−1eβ(Ej−E0) − 1
, (4)

such that the number of particles in excited states writes

Nexc(z, T ) =
∑

j>0

1

z−1eβ(Ej−E0) − 1
, (5)

which is an increasing function of z. BEC will occur if Nexc(z, T ) stays finite when z
approaches 1, while n0 is not bounded and diverges as z → 1. This depends on how Ej

depends on j.
Using the formula

∞∑

n=1

xn =
x

1− x
if |x| < 1, (6)

we can write Eq. (5) as

Nexc(z, T ) =
∑

j>0

∞∑

n=1

znenβ(E0−Ej) =

∞∑

n=1

zn
∑

j>0

enβ(E0−Ej). (7)
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1.2 Semi-classical approximation: using the density of states

If kT is much larger than the spacing Ej+1 − Ej between consecutive energies in the
spectrum, we can make a semi-classical approximation and replace the discrete sum by an
integral

∑

j>0

→
∫ +∞

E0

ρ(ε)dε, (8)

where ρ(ε) is the density of states at energy ε, defined such that ρ(ε)dε is the number of
states of the Hamiltonian H(r,p) with an energy between ε and ε+ dε, or more formally

ρ(ε) =
1

hD

∫
dp dr δ (H(r,p)− ε) , (9)

with h the Planck constant and D the dimension of the system. We thus have

Nexc(z, T ) =

∫ +∞

E0

dε ρ(ε)nε(ε) =

∫ +∞

E0

dε
ρ(ε)

z−1eβ(ε−E0) − 1
. (10)

The convergence of the integral at +∞ is ensured as soon as ρ(ε)e−βε has a converging
integral, which is easy with the exponential: ρ(ε) should not increase exponentially with
the energy. When z → 1, the limit at ε → E0 is more tricky: the integrand in Eq. (10)
is approximately kTρ(ε)/(ε − E0) such that ρ(ε) should converge to 0 when ε → E0 to
ensure the convergence of the integral. For example, Nexc diverges in ρ does not depend
on ε.

Introducing an infinite sum over n, we can recast Eq. (10) into:

Nexc(z, T ) =

∞∑

n=1

zn
∫ +∞

E0

dε ρ(ε)e−nβ(ε−E0) =

∞∑

n=1

zn
∫ +∞

0
dε ρ(ε− E0)e

−nβε. (11)

Using the change in integration variable u = nβε or ε = ukT/n, we can also recast this
integral as

Nexc(z, T ) = kT

+∞∑

n=1

zn

n

∫ +∞

0
du ρ

(
kT

n
u− E0

)
e−u. (12)

1.3 Simple expressions for a power-law density of states

If the density of state ρ is a power law, i.e.

ρ(ε) =
1

ϵ0

(
E0 + ε

ε0

)q

, (13)

then we get for the total number of particles in the excited states

Nexc(z, T ) =
kT

ε0

+∞∑

n=1

zn

n

∫ +∞

0
du

(
kT

nε0

)q

uqe−u =

(
kT

ε0

)q+1 +∞∑

n=1

zn

nq+1

∫ +∞

0
duuqe−u,

(14)
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and finally

Nexc(z, T ) = Γ(q + 1)

(
kT

ε0

)q+1

Liq+1(z). (15)

Γ is the Euler Gamma function, and

Lis(z) =
+∞∑

n=1

zn

ns
(16)

is the polylogarithmic function of order s. When it converges in the limit z → 1, i.e. for
s > 1, its value for z = 1 is the Riemann zeta function:

Lis(1) = ζ(s). (17)

We thus have a simple criterion for BEC to occur: if q > 0, Nmax
exc (T ) = Nexc(1, T ) =

Γ(q+1)ζ(q+1)
(
kT
ε0

)q+1
is finite and the number of atoms in the excited states saturates

if N > Nc(T ) = Nmax
exc (T ),

Nc(T ) = Γ(q + 1)ζ(q + 1)

(
kT

ε0

)q+1

, (18)

or equivalently if T < Tc(N) with

kTc =
ε0N

1
q+1

[Γ(q + 1)ζ(q + 1)]
1

q+1

. (19)

Below Tc, the number of particles in the excited states saturates to Nexc = Nc(T ), and
fraction of atoms in the ground state is given by

N0

N
= 1− Nexc

N
= 1− Nc(T )

N
. (20)

Using Nc(T ) ∝ T q+1 and N = Nc(Tc) by definition of Tc, we get

N0

N
= 1−

(
T

Tc

)q+1

. (21)

1.4 From box traps to harmonic traps

Let us consider the case where the Hamiltonian describes a particle of massM in dimension
D in a generic, isotropic1 power-law trap

V (r) = V0

( r
R

)2/α
(22)

1If the trap is anisotropic, it is easy to come back to the isotropic case by a mere dilation of the axes.
The conclusion for BEC still holds.
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with α ≥ 0 some exponent. This expression describes the case of an harmonic trap, with
α = 1, but also a box trap for α = 0, where V = 0 for r < R and V = +∞ for r > R.
The Hamiltonian is then

H(r,p) =
p2

2M
+ V0

( r
R

)2/α
. (23)

Let us compute the density of states for this case, taking advantage of the symmetry of
the trap and the kinetic energy:

ρ(ε) =
1

hD

∫ +∞

0
C(D)rD−1dr

∫ +∞

0
C(D)pD−1dp δ

(
p2

2M
+ V0

( r
R

)2/α
− ε

)
. (24)

Here, C(D) is a constant that depends on the dimension and gives the result of angular
integration: C(1) = 1, C(2) = 2π, C(3) = 4π.

We make the change in integration variable K = p2/2M , such that dK = p dp/M and
p =

√
2MK. We get

ρ(ε) =
C(D)2

2

(
2M

h2

)D/2 ∫ +∞

0
rD−1dr

∫ +∞

0
KD/2−1dK δ

(
K + V0

( r
R

)2/α
− ε

)
. (25)

The delta function integrates directly with K = ε− V0
(
r
R

)2/α
with the condition K ≥ 0,

i.e. r ≤ rmax = R (ε/V0)
α/2:

ρ(ε) =
C(D)2

2

(
2M

h2

)D/2 ∫ rmax

0
dr rD−1

(
ε− V0

( r
R

)2/α
)D/2−1

. (26)

We now use the variable u = r/rmax:

ρ(ε) =
C(D)2

2

(
2MR2

h2

)D/2(
ε

V0

)Dα/2

εD/2−1

∫ 1

0
duuD−1

(
1− u2/α

)D/2−1
. (27)

The integral is now just a number η(α,D) = D−1Γ(D/2)Γ(1+αD/2)/Γ[(1+α)D/2]. We
get:

ρ(ε) =
η(α,D)C(D)2

2

(
2MR2

h2

)D/2

V
−Dα/2
0 εD(α+1)/2−1 =

1

ϵ0

(
ε

ε0

)q

(28)

with

ε0 =

[
2

η(α,D)C(D)2

(
h2

2MR2

)D/2

V
Dα/2
0

] 2
D(α+1)

(29)

and

q =
D(α+ 1)

2
− 1. (30)

We can now conclude: BEC can occur only if q > 0, i.e. only if

D(α+ 1) > 2. (31)

• In dimension D = 1, we need α > 1, i.e. a trap steeper than a harmonic trap, a
linear trap for example. BEC doesn’t occur in a box, nor in a harmonic trap.
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• In dimension D = 2, the condition is α > 0. Any trapping potential with a power-
law with positive exponent is sufficient to have a finite critical temperature for BEC.
However, BEC doesn’t occur in a box trap, which corresponds to the critical case
α = 0.

• Finally, in dimension D = 3, the condition writes α > −1/3, which is always fulfilled
as α ≥ 0. BEC occurs in any trap, even in a box (uniform density).

Exercise: give the expressions for Nc(T ) and Tc(N) for the cases discussed above: har-
monic trap of frequency ω0 in 2D and 3D, and box trap with an atomic density n in 3D.

1.5 Experimental results

The first experimental demonstration of atomic Bose-Einstein condensation has been per-
formed in the group of Eric Cornell and Carl Wieman [7]. They observed BEC of rubidium
87 atoms confined in a three-dimensional harmonic magnetic trap (q = 2), by releasing
the atoms to access the momentum distribution2, see Fig. 1. As temperature is lowered,
a central peak appears in the distribution, corresponding to the condensate. In this case,
condensation happens both in real and momentum space. They verified approximately
the expected law for the condensate fraction [8].

N0

N
= 1−

(
T

Tc

)3

Figure 1: Left: First observation of Bose-Einstein condensation in atomic gases. Rubid-
ium atoms initially confined in a harmonic trap are released in a time-of-flight experiment.
The gas expands, and the density distribution (integrated along the imaging axis) after
expansion is linked to the initial momentum distribution. Figure from Cornell’s group.
Right: Condensed fraction as a function of temperature in units of the predicted critical
temperature T0 for a non interacting gas, compared with the prediction for a non interact-
ing gas. BEC occurs at a temperature slightly lower than predicted by the non interacting
model. Inset: remaining atoms as a function of T/T0. Figure adapted from [8].

2It was understood soon after that the shape of the central peak is linked to the initial interaction
energy rather than to kinetic energy.
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It took almost twenty more years to be able to realize a three-dimensional box potential
for cold atoms (q = 1/2). In this case, condensation occurs in momentum state only.
Interactions are kept extremely small, the density being independent of temperature in a
box and much smaller than in the previous case. This experiment was first performed in
the group of Zoran Hadzibabic in Cambridge [9], see Fig. 2. The absence of interactions
makes the agreement with theory easier, and they were able to observe the saturation of
the excited states [10].

Figure 2: Left: Observation of BEC for a 3D Bose gas confined in a box trap. Figure
from Ref. [9]. Upper panel: momentum distribution as observed after a 50ms time-of-flight
expansion. Lower panel: cut in the momentum distribution. Inset: in situ distribution
before expansion. Right: Saturation of the number of atoms in the excited states in this
situation. Figure from Ref. [1], adapted from a figure provided by Zoran Hadzibabić.

2 Weakly interacting degenerate Bose gas

From the early results presented in Fig. 1, it appears already that there is a shift in
the critical temperature with respect to the prediction for the non interacting case. The
expansion of the condensate is also not only due to its very small kinetic energy, but mainly
to the effect of the repulsive interactions [11]. Even if the interactions remain weak, they
affect qualitatively the shape of the condensate and its dynamics. In this section, we will
derive the equation that describes the condensate in its ground state from a mean-field
approach, using a variational procedure.

2.1 S-wave scattering in a nutshell

I will not recall the scattering theory here, nor derive explicitly the expression of the
effective interaction potential and its link to the scattering length. I refer the interested
reader to Ref. [12]. the main idea is that at low energies (below ∼ 1K), collisions occur
only in s-wave and are described by a single parameter, the scattering length a.

In brief, we consider a spherical interaction potential Vint(|r1 − r2|) depending only on
the relative distance r = |r1 − r2| between the two identical colliding particles of mass
M . We assume that Vint(r) is short-range, with an attractive part faster than 1/r3 and
a sharp potential barrier near r = 0 due to the electronic clouds of the two atoms. We
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introduce the center-of-mass frame:

P̂ = p̂1 + p̂2 and p̂ =
1

2
(p̂1 − p̂2), (32)

R̂ =
1

2
(r̂1 + r̂2) and r̂ = r̂1 − r̂2. (33)

The Hamiltonian Ĥ =
p̂21
2M +

p̂22
2M + Vint(|r̂1 − r̂2|) writes with these new coordinates:

H =
1

4M

(
(p̂1 + p̂2)

2 + (p̂1 − p̂2)
2
)
+ V (r̂) =

P̂2

4M
+

p̂2

M
+ Vint(r̂). (34)

P̂ and R̂ describe the motion of the center of mass (mass 2M) and p̂ and r̂ describe the
relative motion, equivalent to the motion of a particle of mass M/2. The two motions
are independent and we concentrate on the relative motion to describe the collision. The
problem corresponds to the scattering of a fictitious particle of mass M/2 on the potential
Vint(r).

It is solved by looking at the long-distance steady state of the wave function, with
r → ∞, under the form:

ψk(r) ∼ eik.r + f(k,n,n′)
eikr

r
, (35)

with k = kn corresponding to the incoming wave of energy ℏ2k2/M , and r = rn′ to the
outgoing wave. Vint(r) being isotropic, the scattering amplitude f(k, θ) only depends on k
and on the angle θ = (n,n′) between the incoming and the outgoing waves. The scattering
amplitude is linked to the interaction potential through

f(k,n,n′) = − M

4πℏ2

∫
dr′ e−ikn′·r′Vint(r

′)ψk(r
′). (36)

The wave function can be written as a product of a function of r and a function of θ,
and the angular part can be decomposed on the spherical harmonics. For partial waves
with a non zero angular momentum ℓ > 0, the radial potential is modified by a centrifugal
term ℏ2ℓ(ℓ+1)/Mr2, which constitutes a potential barrier and prevent atoms with a very
small energy to reach the region where Vint(r) is non zero. As a result, at low energy only
partial waves with ℓ = 0, also called s-waves by analogy with the atomic structure, can
contribute to the scattering amplitude. As s-waves are isotropic, the scattering amplitude
is independent of θ. The scattering length is given by the limit at low energy of f(k):

a = − lim
k→0

f(k). (37)

The scattering properties at low energy are entirely contained in this single parameter.
We can then replace the true interaction potential Vint(r) by an effective potential that
will give the same scattering length a. The simplest choice3 is

Veff(r) = gδ(r), (38)

where we need to choose

g =
4πℏ2a
M

(39)

to get the correct scattering amplitude (to lowest order, ψk(r
′) ∼ eik.r

′
in Eq. (36)).

3In reality, the potential should be regularized in zero and take a more sophisticated form, see Ref. [13].
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2.2 Gross-Pitaevskii equation

To describe the effect of weak interactions on the condensate, we will take a mean-field
approach. We will assume that the interactions are weak enough to neglect the correlations
between particles in the many-body wave function |Ψ⟩, and write it as a product state of
N identical single particle states |ϕ⟩, where N is the number of atoms in the condensate:

|Ψ⟩ = |ϕ⟩1 ⊗ |ϕ⟩2 ⊗ |ϕ⟩3 ⊗ · · · ⊗ |ϕ⟩N . (40)

However, we now allow that this single-particle state |ϕ⟩ differs from the ground state of
the single-particle Hamiltonian h(1) = p2/2M + V (r), that we take with the kinetic term
and an optional potential term. We then apply a variational method and look for the
single particle wave function |ϕ⟩ which would minimize the energy E[ϕ] for the state |Ψ⟩,
under the constraint ⟨ϕ|ϕ⟩ = 1.

Using the effective potential introduced in the previous section, the many-body Hamil-
tonian for N interacting atoms writes

H =
N∑

i=1

h
(1)
i +

g

2

∑

i ̸=j

δ(ri − rj) (41)

where h
(1)
i = 1⊗1⊗· · ·⊗h(1)⊗1⊗· · ·⊗1 with h(1) = p2/2M +V (r) at the ith position is

the single-particle Hamiltonian acting on atom i. The second term, with N(N − 1) terms
in the sum, describes the contact interactions.

The energy E[ϕ] writes, given the state |ψ⟩ of wave function ϕ(r) = ⟨r|ϕ⟩:

E[ϕ] = N

∫
dr

{
ϕ∗(r)

[
− ℏ2

2M
∇2ϕ

]
+ ϕ∗(r)V (r)ϕ(r)

}

+
g

2
N(N − 1)

∫
dr dr′ ϕ∗(r′)ϕ∗(r)δ(r− r′)ϕ(r)ϕ(r′) (42)

≃ N

∫
dr

{
ϕ∗(r)

[
− ℏ2

2M
∇2ϕ

]
+ ϕ∗(r)V (r)ϕ(r)

}
+ g

N2

2

∫
drϕ∗(r)2ϕ(r)2.

In the last line, we have replaced N(N−1) by N2, which is valid if the condensate contains
many atoms. Instead of minimizing E[ϕ] with the constraint

∫
drϕ∗(r)ϕ(r) = 1, (43)

we use the Lagrange multiplier approach and minimize

F (ϕ, ϕ∗) = E[ϕ]− λN

∫
drϕ∗(r)ϕ(r), (44)

where ϕ and ϕ∗ act as independent variables. The change in F when ϕ∗ is modified by an
infinitesimal amount δϕ∗ writes

δF

N
=

∫
drδϕ∗(r)

[
− ℏ2

2M
∇2ϕ+ V (r)ϕ(r)− λϕ(r) + gNϕ∗(r)ϕ(r)2

]
. (45)
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F is minimum if ϕ obeys the following equation:

− ℏ2

2M
∇2ϕ+ V (r)ϕ(r) + gN |ϕ(r)|2ϕ(r) = λϕ(r). (46)

There is a simple interpretation of the Lagrange multiplier λ. The energy of the ground
state with N particles writes

E(N) = NE1 +
N(N − 1)

2
E2 (47)

with E1 the single-particle energy corresponding to |ϕ⟩ and E2 the two-particle energy for
two atoms in state |ϕ⟩. The energy needed to add a particle in the condensate is given by

E(N + 1)− E(N) = E1 +N
N + 1− (N − 1)

2
E2 = E1 +NE2 = λ. (48)

The last equality comes directly from the integration of Eq. (46) after multiplication by
ψ∗(r). In other words, λ is the chemical potential of the gas.

Introducing the wave function normalized to N atoms ψ =
√
Nϕ and using µ as a

notation for the chemical potential, we arrive at the usual form of the time-independent
Gross-Pitaevskii equation:

− ℏ2

2M
∇2ψ + V (r)ψ(r) + g|ψ(r)|2ψ(r) = µψ(r). (49)

Under this form, the square modulus of the wave function is simply the atomic density
of the condensate:

n(r) = |ψ(r)|2. (50)

2.3 Thomas-Fermi limit

It is easy to check using a Gaussian ansatz for ψ that the condensate would be unstable
with attractive interactions, i.e. g < 0, unless the atom number is below some maximum
atom number [3]. This maximum atom number begin quite small (typically of the order
of 100 atoms), we will only consider the case of repulsive interactions in this lecture, i.e.
g > 0.

Let us estimate the three contributions to the energy per particle in the Gross-Pitaevskii
equation (GPE), assuming that the condensate with N atoms has a size of order R. We
get (in 3D):

Ek ≃ ℏ2

2MR2
(51)

Eint ≃ gN

R3
= 8π

ℏ2

2M

Na

R3
(52)

Epot ≃ V (R) =
1

2
Mω2

0R
2 =

ℏ2

2M

R2

a40
(53)
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if we assume a harmonic potential of frequency ω0 and a0 =
√

ℏ/Mω0 is the size of its
ground state. These energies can be recast in units of ℏω0 = ℏ2/Ma20:

Ek ≃ ℏω0

2

a20
R2

(54)

Eint ≃ ℏω0

2
× 8π

Na

a0

a30
R3

(55)

Epot ≃ ℏω0

2

R2

a20
. (56)

If N is sufficiently large, the interaction term will be large, and the size of the condensate
R will be significantly larger than the harmonic ground state a0 due to the repulsive
interactions. In this limit, both the interaction term and the potential term (which scales
as R2/a20) will be much larger than the kinetic term, which instead is reduced by a factor
a20/R

2 with respect to the non interacting situation. For a harmonic trap, the potential
energy will be much larger than ℏω0, indicating that interactions induce a population of
the excited states of the harmonic oscillator.

The Thomas-Fermi approximation consists in neglecting the kinetic term in the GPE
(49), which becomes a simple equation for ψ (no derivative). This justified if 8πNa≫ R,
see Eqs. (51) and (52). We can simplify by ψ, which leads to the solution for the density:

nTF(r) =
1

g
[µ− V (r)] , for V (r) ≤ µ. (57)

The condensate thus takes a shape that is the opposite of the potential —a parabola
with a maximum in the trap center if the trap is harmonic, see Fig. 3. The condition
V (r) ≤ µ sets the limits of the condensate, where the density vanish. For an isotropic trap
for instance, the radius is given by V (R) = µ. Around this region, of course, the term
gn(r) ≃ µ− V (r) in the GPE becomes very small, and the kinetic term must play a role.

μ

-5 0 5

ξ

n0

N/L

-15 -10 -5 0 5 10 15

Figure 3: Left: Solution of Gross-Pitaevskii equation for a condensante in a harmonic
trap (full blue line), compared to the Thomas-Fermi profile (dashed magenta, very well
superposed except on the edges) and the non interacting solution (dashed cyan). Also
shown are the trapping potential (dashed red) and the chemical potential (dashed black).
Right: Same thing in a box potential. The density is uniform, except in a small region
of size ξ near the edge.
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The size of this region can be estimated easily in the case of a cubic box trap. The size
ξ over which the density drops is found by equating the kinetic energy due to the wave
function bending, ℏ2/2Mξ2, and the interaction energy gn0 = µ. We find

ξ =
ℏ√
2Mµ

, (58)

which is called the healing length. Near one of the edges, for example in (x, L/2, L/2) with
x≪ L if the box is defined by x, y, z ∈ (0, L), the wave function is given by

ψ(x, 0, 0) ≃ √
n0 tanh

(
x

ξ
√
2

)
. (59)

Its square (the density) is represented in Fig. 3, right. The central density is a little higher
due to this depletion at the edges, on the order of n0 ≃ N/(L− 2ξ)3.

Exercise: using the Thomas-Fermi approximation, give the expression for the chemical
potential µ in the case of atoms confined in a harmonic trap in dimension 2 and 3, with
trapping frequencies ωx and ωy (and ωz). Deduce the Thomas-Fermi radius Ri in each
direction, i.e. the radius at which the density vanishes.

3 Time-dependent GPE and hydrodynamic equation

3.1 Time-dependent GPE

The time-dependent version of GPE is very similar to its time-independent counterpart
Eq. (49) [3, 5]:

iℏ∂tψ = − ℏ2

2M
∇2ψ + V (r)ψ(r) + g|ψ(r)|2ψ(r). (60)

If a wave function ψ0 satisfies the time-independent GPE, then ψ(r, t) = ψ0(r) exp(−iµt/ℏ)
is a solution of the time-dependent GPE, Eq. (60). It corresponds to the ground state
of the condensate at rest. The time-dependent GPE will also us instead to explore the
excitations and the dynamics of the condensate.

3.2 Hydrodynamic formulation

We can give an equivalent of Eq. (60), which implies a single complex classical field, in
terms of coupled hydrodynamic equations on two real classical fields, the density and the
velocity field.

Let use write the wave function in terms of density n = |ψ|2 and phase:

ψ(r, t) =
√
n(r, t)eiθ(r,t). (61)

We will inject this expression into (60), multiply by ψ∗ and get two equations for the
imaginary part and the real part.

We start from the easy terms that do not involve derivatives. We get a real term:

ψ∗(r)
[
V (r)ψ(r) + g|ψ(r)|2ψ(r)

]
= n(r) [V (r) + gn(r)] . (62)
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Then we examine the Laplacian term:

ψ∗∇2ψ =
√
ne−iθ∇ ·

[
∇
(√

neiθ
)]

=
√
ne−iθ∇ ·

[(
∇√

n
)
eiθ + i

√
neiθ∇θ

]

=
√
ne−iθ

[(
∇2√n

)
eiθ + 2ieiθ∇

(√
n
)
· ∇θ + i

√
neiθ∇ · ∇θ −√

neiθ∇θ2
]

= n

[∇2√n√
n

−∇θ2
]
+ i (∇n · ∇θ + n∇ · ∇θ) . (63)

By analogy with the probability current in quantummechanics J = iℏ(ψ∇ψ∗−ψ∗∇ψ)/2M ,
we introduce the fluid velocity

v =
ℏ
M

∇θ. (64)

Using this notation, the Laplacian writes finally

− ℏ2

2M
ψ∗∇2ψ = n

[
− ℏ2

2M

∇2√n√
n

+
1

2
Mv2

]
− i

ℏ
2
(∇n · v + n∇ · v) . (65)

The time derivative of the left-hand-side writes

iℏψ∗∂tψ = iℏ
√
ne−iθ

[
1

2
√
n
∂tne

iθ + i∂tθ
√
neiθ

]

= i
ℏ
2
∂tn− nℏ∂tθ. (66)

Identifying the imaginary term, we get the continuity equation:

∂tn+∇(nv) = 0. (67)

This equation describes the conservation of the flow.
Simplifying the real parts by n and taking the gradient, we arrive at a Euler-type

equation:

M∂tv = −∇
[
− ℏ2

2M

∇2√n√
n

+
1

2
Mv2 + V + gn

]
. (68)

Eqs. (67) and (68) together are equivalent to Eq. (60). Eq. (68) can also be recast into

M
Dv

dt
= −∇

[
− ℏ2

2M

∇2√n√
n

+ V + gn

]
(69)

where
Dv

dt
= ∂tv + v · ∇v (70)

is the particle derivative in the flow. The right-hand side has a potential energy, the
interaction term gn that plays the role of the pressure and a quantum pressure term
involving ℏ which has no classical counterpart. This terms plays a role on smaller scales
(the healing length ξ typically) and is responsible for the edges of the wave function in a
trap.

Neglecting this term, which is less restrictive than the Thomas-Fermi approximation
that would also neglect the v2 term, leads to a description of the condensate dynamics at
larger scales. This is the hydrodynamic approximation, useful for example to derive the
collective modes of a trapped Bose gas.
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3.3 Wave-like excitations

The time-dependent GPE, or the hydrodynamics equations, gives us access to the ele-
mentary excitations on the condensate. Let us first consider the easy case of a homo-
geneous gas. At equilibrium, the density is n0 = µ/g, independent of position, and the
velocity field is zero. We look for small amplitude excitations. We write the density as
n(r, t) = n0 = δn(r, t) and will keep only first order terms in δn and v.

Under these assumptions, the continuity equation at first order writes

∂tδn+ n0∇ · v = 0. (71)

Using the expansion
√
n =

√
n0 + δn/2

√
n0, we get for the Euler equation at first order:

M∂tv = −∇
[
− ℏ2

2M

∇2δn

2n0
+ gδn

]
. (72)

Taking the time derivative of Eq. (71), we get

∂2t n =
n0
M

∇2

[
− ℏ2

2M

∇2δn

2n0
+ gδn

]
= ∇2

[
− ℏ2

4M2
∇2δn+

gn0
M

δn

]
. (73)

We look for solutions of the form A cos(ωt− k · r+φ) for both the density δn and the
velocity, which leads to the following dispersion relation for the small amplitude excita-
tions:

ω(k) =

√
ℏ2k4
4M2

+
gn0k2

M
=

√
ℏ2k4
4M2

+ c2k2, (74)

where we have introduced the quantity

c =

√
gn0
M

=

√
µ

M
(75)

which has the dimension of a velocity.
The relation ω(k) in Eq. (74) is known as the Bogolubov spectrum. It is represented in

Fig. 4. It behaves differently at low or high momenta:

• In the low momentum limit, the term in k2 dominates and the frequency writes
approximately ω(k) = ck. The dispersion relation is thus linear. This corresponds
to sound waves, with a speed of sound given by c. This is very different from the
ideal gas, which has a dispersion relation in k2.

• In the high momentum limit, the term in k4 is larger. We can make an expansion
to first order in c2k2, and get

ω(k) =
ℏ2k2

2M

√
1 +

4M

ℏ2k2
µ ≃ ℏ2k2

2M
+ µ. (76)

The spectrum corresponds to free particles with an energy shofted by µ due to the
interactions with the majority atoms in the condensate.

The boundary between these two regimes occurs for

ℏ2k2

2M
= µ or k =

√
2Mµ

ℏ
= ξ−1. (77)

14



particles: ℏω = μ +
ℏ2

k
2

2 m

sound: ω = ck

ξ-1 k

μ

ω

Figure 4: Bogolubov spectrum in a homogeneous gas.

3.4 A first criterion for superfluidity: existence of a critical velocity

The linear behavior of the dispersion relation has an important consequence. Indeed, let
us consider a condensate at rest, in which we launch an very small object of mass m at
speed v. At which condition will the motion of this object be damped through the creation
of some excitation in the fluid? Note that the situation is equivalent to the one of the
fluid moving at −v, if we look in the frame moving at −v, such that it also describes
the possible damping of the flow by excitation of the fluid due to small imperfections in a
pipeline.

The problem is in variant in a translation (at least along v, and energy and total
momentum are conserved. Let use write energy and momentum conservation:

Before excitation After excitation

Energy 0 +
1

2
mv2 cℏk +

1

2
mv′2

Momentum 0+mv ℏk+mv′

Equating the total momentum before and after excitation gives the new velocity v′ =
v − ℏk/m. Reporting this expression into the condition for energy conservation, we get

1

2
mv2 = cℏk +

1

2
mv2 − ℏk · v +

ℏ2k2

2m
⇔ v · k = ck +

ℏ2k2

2m
. (78)

As ℏ2k2/2m is always positive, the last equality implies v · k ≥ ck and thus v ≥ c. The
speed of sound c appears to be a critical velocity for the creation of excitations. If the
object has a velocity smaller than c, its motion is not damped —or if the fluid flows at
a speed smaller than c, it is not damped. This corresponds to the Landau criterion for
superfluidity, a first hint of superfluidity for quantum gases. As the speed of sound is
proportional to

√
g, it vanishes in the absence of interactions. Interactions are required

for the quantum gas to be a superfluid.
The existence of a critical velocity in quantum gases has been demonstrated by the

group of Wolfgang Ketterle in 1999. A nice illustration is given in Fig. 5, from an experi-
ment performed in the group of Jean Dalibard in Paris. The measured critical velocity vc
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FIG. 2: Evidence for a critical velocity. Two typical curves of the temperature after stirring the laser beam at varying
velocities. a, In the superfluid regime, we observe a critical velocity (here vc = 0.87(9) mm/s), below which there is no
dissipation. b, In the normal regime, the heating is quadratic in the velocity. The experimental parameters are (N , T , µ,
r)=(87000, 89 nK, kB ⇥59 nK, 14.4 µm) and (38000, 67 nK, kB ⇥39 nK, 16.6 µm) for a and b, respectively, yielding µloc/kBT =
0.36 and µloc/kBT = 0.04. The data points are the average of typically ten shots. The y error bars show the standard deviation.
The x error bar denotes the spread of velocities along the size of the stirring beam (1/

p
e radius). The solid line is a fit to

the data according to equation (1). Note that the three low-lying data points in a correspond to the completion of half a turn
and are correlated to a displacement of the cloud, which may be responsible for the observed 1.5 nK temperature shift of these
points. c and d, Calculated radial density distribution for the clouds in a and b, respectively. The dashed blue curve shows the
superfluid density, the solid red curve shows the normal density. The stirring beam potential is indicated by the grey shaded
area (in arbitrary units). The densities are calculated via the local density approximation from the prediction for an infinite
uniform system [15]. The jump of the superfluid density from zero to a universal value of 4/�2

dB (where �dB is the thermal de
Broglie wavelength) is a prominent feature of the BKT transition. The normal density makes a corresponding jump to keep
the total density continuous.

izontal plane and !z/2⇡ = 1.4 (1) kHz in the vertical di-
rection. We use gases with temperature T and central
chemical potential µ in the range 65-120 nK and kB⇥(35-
60) nK, respectively. The interaction energy per particle
is given by Uint = (~2g̃/m)n [14], where n is the 2D
spatial density (typically 100 atoms/µm2 in the center),
m the atomic mass and g̃ the dimensionless interaction
strength. Here g̃ =

p
8⇡a/lz = 0.093, where a = 5.3 nm

is the 3D scattering length and lz =
p
~/m!z [14]. The

energy ~!z (kB ⇥ 70 nK) is comparable to kBT and Uint

(⇠ kB ⇥ 40 nK at the trap center), and the gas is in the
quasi-2D regime.

We stir the cloud with a laser beam which creates
a repulsive potential with height Vstir ⇡ kB ⇥ 80 nK.
This is at least four times the local chemical potential
µloc(r) = µ � V (r). The beam has a Gaussian profile
with a waist of w0 = 2.0 (5) µm, which is larger than the
local healing length ⇠ = 1/

p
g̃n (⇡ 0.3 µm at the trap

center), but small compared to the size of the cloud (full
width at half maximum ⇡ 25 µm) (see Fig. 1). We stir
for typically tstir = 0.2 s at constant velocity v in a cir-
cle of radius r centred on the cloud. The intensity of the
stirring beam is ramped on and o↵ in ⇡ 5 ms without any

significant additional heating. Once the stirring beam is
switched o↵, we let the cloud relax for 0.1 s and measure
the temperature.

For each configuration (N , T , r), we repeat this ex-
periment for various v from 0 to 2mm/s. We find two
di↵erent regimes for the response and we show an exam-
ple of each in Fig. 2. In Fig. 2a, there is a clear thresh-
old behaviour with no discernable dissipation below a
critical velocity. In contrast, in Fig. 2b, the tempera-
ture increases without a threshold. We identify these
behaviours as the superfluid and normal response, re-
spectively. To model these data we choose for a given
configuration the fit function

T (v) = Tv=0 +  · tstir · max[(v2 � v2
c ), 0], (1)

which describes the heating of a 2D superfluid in the pres-
ence of a moving point-like defect [16]. In equation (1)
the three fit parameters are the temperature at zero ve-
locity Tv=0, the heating coe�cient , and the critical
velocity vc. In the normal state, the fit finds vc ⇠ 0
and the according quadratic heating stems from the lin-
ear scaling of the drag force. Scattering of photons from
the stirring beam leads to a ‘background heating’ of less

Figure 5: Demonstration of a critical velocity in a 2D gas. Left: A focused laser is stirred
around the gas, at some fixed distance from the center, and at a fixed linear speed v.
Right: The energy transferred to the gas is measured in a time-of-flight experiment. At
low v, no energy is transferred. Above a critical value vc, the energy increases quadratically
with v − vc, due to the creation of excited particle out of the BEC. Figure from Ref. [14].

is below c as the focused laser beam used to create the excitation also depletes the density
locally, resulting in a smaller local speed of sound.

3.5 Collective modes in a trap

We consider now the case where the gas is confined in a trap V (r), and we look again for the
elementary excitations away from the density at equilibrium given by n0(r) ≃ [µ−V (r)]/g,
and write n(r, t) = n0(r) + δn(r, t). In the trap, with a large enough atom number, we
can neglect the quantum pressure and use the hydrodynamic approximation, such that
the hydrodynamic equations read

∂tn+∇(nv) = 0, (79)

M∂tv = −∇
[
1

2
Mv2 + V (r) + gn

]
. (80)

We keep only the first order terms in δn and v:

∂tδn+∇(n0v) = 0, (81)

M∂tv = −∇ [V (r) + gn0 + gδn] . (82)

We use V (r) + gn0 ≃ µ to neglect its gradient in Eq. (82). We take again the time
derivative of the continuity equation inject it in Euler’s equation. We get [15]

∂2t δn = ∇ ·
[
gn0(r)

M
∇δn

]
= ∇ ·

[
c2(r)∇δn

]
. (83)

We have introduced the local speed of sound c(r) =
√
gn0(r)/M .

In the case of an isotropic 3D harmonic trap of frequency ω0, the rotational invariance
allows us to give the frequencies of the collective modes as a function of three quantum
numbers (nr, ℓ,m) for the number radial nodes, total angular momentum ℓ and its pro-
jection m = −ℓ . . . ℓ along z. The frequency depends only on nr and ℓ and reads [15]

ωnr,ℓ = ω0

√
2n2r + 2nrℓ+ 3nr + ℓ. (84)
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These frequencies get a small correction if we take into account the terms beyond the
Thomas-Fermi approximation [16].

In two dimensions, the relevant quantum numbers are nr and m, and we get almost
the same formula (notice however the factor 2 instead of 3) [17]

ωnr,m = ω0

√
2n2r + 2nr|m|+ 2nr + |m|. (85)

Let us discuss a few important modes:

• The lowest frequency modes are the center-of-mass or dipole modes, at the trap
frequencies.

• The quadrupole modes, corresponding to a quadrupole deformation of the trap with
nr = 0 and m = ±2 (ℓ = 2 in the 3D case), oscillate at frequency

√
2ω0. They are

specific of a superfluid.

• The first mode with nr = 1 (and m = 0 of ℓ = 0) is the monopole or breathing
mode. Its frequency is

√
5ω0 in 3D and 2ω0 in 2D. In this latter case, it is the same

as the monopole frequency of a thermal gas. We will see in Lecture 2 that this mode
is not damped in 2D, due to the underlying scaling symmetry [18,19].

In anisotropic traps, another mode can also exist: an oscillation along a trap axis,
called the scissors mode [20]. This mode is also a signature of superfluidity and can be
used to probe the superfluid state [21,22].

3.6 Another kind of excitation: vortices

The velocity of the fluid, given by Eq. (64), is proportional to the gradient of the phase,
which is defined everywhere except at the points where ψ vanishes. Outside these singu-
larities, v is well-defined, and its rotational is equal to zero:

∇× v = 0. (86)

As a consequence of the expression of v, we will see that the circulation ΓC of the velocity
along a close contour C that does not cross a singularity is quantized. Consider first the
2D case (see Fig. 6, left):

ΓC =

∮

C
v · dℓ = ℏ

M

∮

C
∇θ · dℓ = ℏ

M
∆θ, (87)

where ∆θ is the phase difference of the wave function ψ after a close loop. ψ is singly-
valued in a given point while its phase θ is defined modulo 2π, which means that ∆θ
should be a multiple of 2π, say q2π with q ∈ Z. We find finally

ΓC = q
h

M
, q ∈ Z. (88)

The circulation of the velocity is quantized in units of h/M , the quantum of circulation.
A singularity around which the circulation has a value qh/M , such as the point O in

Fig. 6, is called a vortex of charge q. The density vanishes on this point and recovers
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Figure 6: Left: Circulation of the velocity field around a contour C. The integration is
done on a path where the velocity is well-defined, while there may be points inside the
contour, here point O, where the density vanishes and the velocity is not defined, which
may be a vortex of charge q. The circulation is an integer number of h/M , qh/M in this
latter case. Right: Typical velocity field around a vortex. The central region of radius
r0 ∼ ξ is depleted and the density vanishes in the center of the core.

its background value on a characteristic size Rv, the vortex radius. Around a vortex,
the velocity field is rotating. If we assume that, at least locally around the vortex, the
velocity is tangential with a modulus that only depends to the distance to the vortex core
v(r) = v(r)eφ in polar coordinates (r, φ), see Fig. 6, right, we can deduce the value of v(r)
for a given circulation. Let us compute the circulation over a circle of radius r:

ΓC =

∫ 2π

0
dφv(r)r = 2πrv(r) = q

h

M

⇒ v(r) = q
ℏ
Mr

. (89)

If the fluid is in 3D and not in 2D, singular vortex points are replaced by vortex lines
along which the density vanishes and around which the fluid rotates. To estimate the size
of the vortex core, we write the wave function ψ as a modulus that depends only on the
distance r to the vortex core, and a phase winding qφ that leads to the correct velocity
given at Eq. (89):

ψ =

√
µ

g
χ(r)eiqφ (90)

where we have introduced the density µ/g far from the vortex core, linked to the healing
length through µ = ℏ2/2Mξ2, see Eq. (58). We write the GPE in cylindrical coordinates4

µ

√
µ

g
χeiqφ = − ℏ2

2M

(
χ′′ +

1

r
χ′ − q2

r2
χ

)√
µ

g
eiqφ + g

µ

g

√
µ

g
χ3eiqφ (91)

where the term in q2 comes from the second derivative along φ, and χ′ and χ′′ are the
derivatives of χ(r). We simplify by

√
µ/geiqφ and replace µ by ℏ2/2Mξ2 to get

χ = −ξ2
(
χ′′ +

1

r
χ′ − q2

r2
χ

)
+ χ3. (92)

4The Laplacian of a function f(r, φ, z) in cylindrical coordinates writes∇2f = ∂2
rF+ 1

r
∂rf+

1
r2
∂2
φf+∂2

zf .
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Figure 7: Left: Modulus of the wave function χ(r) of a vortex of charge q = ±1 (blue line)
and of charge q = ±2 (red line), as a function of the distance from the core in units of ξ.
Right: Vortex lattice with approximately 50 singly-charged vortices obtained by rotating
a quasi two-dimensional gas in a harmonic trap. Figure from LPL, see also Ref. [23].

We see that the natural length appearing to describe the shape of a vortex is ξ, the healing
length. The solution is shown in Fig. 7, left, for two values of |q|.

Let use finally estimate the energy of a cylindrical condensate of radius R with a vortex
of charge q in its center. The density is homogeneous almost everywhere, n0 ≃ N/(πR2L),
except in the core where t drops to zero. We will model the density profile as a step
function, with zero density in a central cylinder of radius ξ and n0 elsewhere.

The dominant energy is the kinetic energy, which integrated over the cylinder is

Eq = n0L

∫ R

ξ
2πr dr

1

2
Mv(r)2 = πn0L

∫ R

ξ
dr
q2ℏ2

Mr
= q2

πℏ2n0L
M

log

(
R

ξ

)
= q2E1 (93)

where E1 is the energy of the condensate with a vortex of charge 1.
We can compare this energy with a system with q independent vortices, which has

the same total circulation. Its energy is now qE1 instead of q2E1. We see here that
it is energetically more favorable to break a multiply-charged vortex into several singly-
charged vortices. A system placed in fast rotation, which tends to accommodate vortices,
will indeed result in a vortex lattice with many vortices of charge unity, as can be seen in
Fig. 7, right.
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[21] O. M. Maragò et al., Observation of the Scissors Mode and Evidence for Superfluidity
of a Trapped Bose–Einstein Condensed Gas, Phys. Rev. Lett. 84 (2000) 2056.

[22] C. De Rossi et al., Probing superfluidity in a quasi two-dimensional Bose gas through
its local dynamics, New Journal of Physics 18 (2016) 062001.

[23] R. Sharma et al., Thermal melting of a vortex lattice in a quasi two-dimensional
Bose gas, Phys. Rev. Lett. 133 (2024) 143401.

21

https://link.aps.org/doi/10.1103/PhysRevLett.81.4541
https://link.aps.org/doi/10.1103/PhysRevA.58.2385
https://link.aps.org/doi/10.1103/PhysRevA.55.R853
https://link.aps.org/doi/10.1103/PhysRevLett.88.250402
https://link.aps.org/doi/10.1103/PhysRevLett.83.4452
https://link.aps.org/doi/10.1103/PhysRevLett.84.2056
http://stacks.iop.org/1367-2630/18/i=6/a=062001
https://link.aps.org/doi/10.1103/PhysRevLett.133.143401

	Reminder: BEC in an ideal gas
	BEC: a saturation of the excited states
	Semi-classical approximation: using the density of states
	Simple expressions for a power-law density of states
	From box traps to harmonic traps
	Experimental results

	Weakly interacting degenerate Bose gas
	S-wave scattering in a nutshell
	Gross-Pitaevskii equation
	Thomas-Fermi limit

	Time-dependent GPE and hydrodynamic equation
	Time-dependent GPE
	Hydrodynamic formulation
	Wave-like excitations
	A first criterion for superfluidity: existence of a critical velocity
	Collective modes in a trap
	Another kind of excitation: vortices


