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Part II

networks based on 
atomic collective states



extending the communication distance:

Repeater in Telecommunication

A quantum state cannot be "amplified"

optical fibre
Repeater

PROBLEM

Current quantum cryptography technology limited to 
~100 km



final state of a cloning procedure

No Cloning

Wooters & Zurek, Nature 229, 802 (1982)

Perfect cloning
machine |Añ

Machine cloning vertical 
and horizontal polarization

states of light

Ideal case ¹

Moral of the story: it is possible to create a machine to clone specific states, 
but not a machine to clone an arbitrary superposition of states



How to Create Entangled Photon Pairs
18 1.6 Parametric downconversion
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Figure 1.1 A schematic of type-II PDC. A blue pump pulse passes
through a second-order nonlinear crystal and each pump photon has
a small probability of decaying into two red daughter photons with
orthogonal polarisations. These are then split and one used to detect
the presence of the other.

source, the probability of generating two pairs at the same time must be small, and

hence all pair production must inevitably be spontaneous. This is achieved by en-

suring that the likelihood of generating a pair from a given pump pulse is low. All

the work contained herein is concerned with the spontaneous regime.

As a source of single photons, downconversion has the inherent advantages that

the apparatus required is simple — only a pump laser and a �(2) nonlinear crystal are

needed to generate photon pairs, and the entire apparatus is at room temperature

and pressure. The variety of lasers and crystals available give a considerable amount

of flexibility in determining the parameters of the photons generated, allowing the

use of e�cient, room-temperature detectors in many cases. This makes PDC one

of the most promising candidates for single photon sources in quantum information

applications.

SPDC tipo II

26 Capítulo 2. Óptica quântica aplicada à QKD
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propriedades do estado de um fóton

2.1.2 Divisor de feixes quântico

expressões para o divisor de feixes clássico e sua adaptação quântica

2.1.3 Polarização da luz: superposição de estados

descrição de estados gerais de superposição em polarização

2.2 Qubits e teorema da não clonagem

introdução formal do qubit e demonstração do teorema da não clonagem

2.3 Protocolo BB84

explicação do protocolo com fótons individuais

2.4 Emaranhamento quântico

introdução à noção de emaranhamento quântico

2.4.1 Não-separabilidade: fóton individual depois de um divisor de feixes

discutir estado de um fóton após divisor 50:50

2.4.2 Desigualdades de Bell

discutir significado e operação da desigualdade de Bell

2.5 Protocolo EK91

explicação do protocolo Ekert 91

Generation of Heralded Single Photons in Pure Quantum States, Peter J. Mosley (2007)
Route for absorption of individual ultrashort photons by an atomic medium, Alyson J. A. Carvalho (2020)
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Quantum Teleportation

Bennett et al., Phys. Rev. Lett. 70, 1895 (1993)



Bennett et al., Phys. Rev. Lett. 70, 1895 (1993)

Alice (2) and Bob (3) each have a 
particle of the entangled pair

Alice wants to transmit the state|f1ñ to Bob:

starting from the product: 
state:

we can make a change of base of the states with Alice to:

in terms of this new basis, we can write:

if Alice makes a measure whose eigenstates are given by this new base, the state
|f3ñ of Bob's particle becomes:

ou ouou

when Alice informs Bob of the result of her measurement, Bob can then apply a 
transformation to |f3ñ and leave particle 3 in the original state |f1ñ



1

2

a

b

Example of a measure of a Bell Base eigenstate

Base of Bell states

Only state that leads 
to measures in a and 
b simultaneously



First experiment: Bouwmeester et al., Nature 390, 575 (1997)

Partial quantum teleportation 
(probabilistic)

Alice's measure indicates only 
one of the states of the new base:

Teleportation occurs 25% of the time

Further measurements of full quantum teleportation (deterministic):

Riebe et al., Nature 421, 734 (2004)
Barret et al., Nature 421, 737 (2004)

Ions

Furusawa et al., Science 282, 706 (1998) coherent light beams



• 1 entangled pair + classic communication channel Faithful transmission 
of a qubit

• Decoupling of information into a purely
quantum and a classical part

Entangled pairs can transmit 
the purely quantum part

Quantum entanglement as the basis for an "engineering" of 
quantum communication channels

Teleportation and Information
• Physical state cannot be cloned, but can be transferred to another system



Quantum Repeater
Entanglement Swapping

BA Entangled DC Entangled

Bell Measurement

Entangled

Scalability requires deterministic or signaled storage 
of quantum entanglement in distant locations



DLCZ

The Amazing DLCZ Protocol



Field 1

Field 2

Writing H

Reading V

H

V

Source of photon pairs

Entanglement between
2 ensembles

Entanglement Swapping

Quantum cryptography



Stored collective 
state

photon 1

After a time 
determined by the

experimentalist

vapor

Reading 
Pulse

photon 2

Possibility to wait 
before emitting the 

second photon

In a complex process it is not 
necessary to generate all 
photons simultaneously

scalability

Entangled photons

Writing 
Pulse

vapor

First implementation: Kuzmich et. al, Nature 423, 731 (2003)

Generation of the photon pair



• Large ensemble of atoms
• L-type level configuration

Cloud of cold atoms: trapped in a 
magneto-optical trap

Cylinder of 
atoms 

participating 
in the 

collective 
state

3 mm

60 μm 105 Cs atoms

Typical Numbers

Basic requirement



Entangled state between field 1 and ensemble

Field 1

Field 1

Writing

Writing
Collective atomic state

: probability of excitation

Creating a single atomic excitation



Reading

Reading

Field 2

Field 2

reading

Entangled state between 
fields 1 and 2

Entangled state between field 1 and ensemble

Extracting the excitation out of the meddium



Field 1

Field 2

Writing H

Reading V

V 

H 

qc : probability of having a photon in 2 at sample output, given a detection in 1

pc : probability of one detection in 2 after one detection in 1

typically pc » 12% qc » 50%

Experimental configuration



For classical fields:

For our system:

è g1,2 > 2 signals non-
classical behavior

(g1,2 )2 £ g1,1 g2,2 

g1,1 e  g2,2 £ 2

J. F. Clauser, PRD 9, 853 (1974) 

D2A

D2B

D1A

D1B

p1,1
p2,2
p1,2

Probabilities of 
joint detections

g1,1 º p1,1 / p1 p1

Correlation 
functions

g2,2 º p2,2 / p2 p2

g1,2 º p1,2 / p1 p2

Normalized
auto-correlation

functions

Normalized
cross-correlation

function

p1
p2

Probabilities of 
simple detections

Characterization of photon pairs



J. Laurat, H. de Riedmatten, D. Felinto, C.-W. Chou, E.W. Shomburg & H.J. Kimble, Opt. Express 14, 6912 (2006)

g12= 600±100

µ Writing power

First measure of g12 : g12 = 2.335 ± 0.014 [A. Kuzmich et. al., Nature 423 , 731 (2003)]

Characterization of photon pairs



storage time



First source of decoherence: Quadrupole Magnetic Field

Each atom sees a different field: 
inhomogeneous broadening of the 

ground states

I I

s-s+

s-

s-

s+

s+

: Magnetic field

: Laser beams
M N,( )

t

large t

Excitation storage time
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g1,2 = 2   classical limit

D.Felinto, C. Chou, H.de Riedmatten, S.Polyakov, H.J.Kimble, Phys. Rev. A 72, 053809 (2005) 

magnetic field off

Correlation 
between fields 

1 and 2

Magnetic field on

Excitation storage time



Use of more sophisticated atomic
traps (optical lattices) and

magnetic field-insensitive states Memory Lifetime: 1.0 – 6.0 ms

Excitation storage time



H. De Riedmatten et al., “Direct measurement of decoherence for entanglement between a photon and a stored excitation”, PRL 97, 113603 (2006)

F=4

F’=4

F=3
mF -4 -3 -2 -1 0 1 2 3 4

Writing s+

For an initial incoherent distribution

For atoms initially in 

Atoms-Field1 entanglement

• If field 1 is detected in a 
superpostion state of s+ and s -, then 
the state of the excitation is projected 
into a coherent superposition of the 
mixed states shown above. 

• Goal : persistency of this projection

• Read pulse s- : qubit mapped to field 
2 with polarization orthogonal to field 1. 
Bell violation between field 1 and field 
2. 

Direct measurement of decoherence



H. De Riedmatten et al., “Direct measurement of decoherence for entanglement between a photon and a stored excitation”, PRL 97, 113603 (2006)

Atoms-Field1 entanglement Setup

Short time, No logic

F=4

F’=4

F=3
mF -4 -3 -2 -1 0 1 2 3 4

Writing s+

For an initial incoherent distribution

For atoms initially in 

Direct measurement of decoherence



H. De Riedmatten et al., “Direct measurement of decoherence for entanglement between a photon and a stored excitation”, PRL 97, 113603 (2006)

Atoms-Field1 entanglement Setup

As a function of memory time, 
Logic used

For an initial incoherent distribution

For atoms initially in 

Direct measurement of decoherence



single photons with memory



Click!

è heralded single photons

Field 1

Field 2

Writing

Reading

First implementation: Chou et. al, PRL 92, 213601 (2004)

Heralded generation of single photons



a : degree of suppression of the two-photon 
component of the conditioned field 2

a = 0.7 ± 0.3%

Click!

J. Laurat et al., Opt. Express 14, 6912 (2006)

Heralded generation of single photons



Heralded generation of single photons



First use of memory for     
increased efficiency

Escrita

Leitura

Synchronization of two single-photon sources

Felinto et. al, Nature Physics 2,  844 (2006)

Probability of detecting all 4 
photons in one trial of the

experiment

28-fold increase in p1122!
(N=23, 12µs)
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VOLUME 59, NUMBER 18 PHYSICAL REVIEW LETTERS 2 NOVEMBER 1987

Measurement of Subpicosecond Time Intervals between Two Photons by Interference

C. K. Hong, Z. Y. Ou, and L. Mandel
Department of Physics and Astronomy, University ofRochester, Rochester, New York i4627

(Received 10 July 1987)

A fourth-order interference technique has been used to measure the time intervals between two pho-
tons, and by implication the length of the photon wave packet, produced in the process of parametric
down-conversion. The width of the time-interval distribution, which is largely determined by an interfer-
ence filter, is found to be about 100 fs, with an accuracy that could, in principle, be less than 1 fs.

PACS numbers: 42.50.8s, 42.65.Re

The usual way to determine the duration of a short
pulse of light is to superpose two similar pulses and to
measure the overlap with a device having a nonlinear
response. ' The latter might, for example, make use of
the process of harmonic generation in a nonlinear medi-
um. Indeed, such a technique was recently used to
determine the coherence length of the light generated in
the process of parametric down-conversion. The coher-
ence time was found to be of subpicosecond duration, as
predicted theoretically. It is, however, in the nature of
the technique that it requires very intense light pulses
and would be of no use for the measurement of single
photons. On the other hand, if we are dealing with two
photons and wish to determine the time interval between
them, which has a dispersion governed by the length of
the photon wave packet, we are usually limited by the
resolving time of the photodetector to intervals of. order
100 ps or longer.
We wish to report an experiment in which the time in-

terval between signal and idler photons, and by implica-
tion the length of a subpicosecond photon wave packet,
produced in parametric down-conversion was measured.
The technique is based on the interference of two two-
photon probability amplitudes in two-photon detection,
and is easily able to measure a time interval of 50 fs,
with an accuracy that could be 1 fs or better.
An outline of the experiment is shown in Fig. 1. A

coherent beam of light of frequency mo from an argon-
ion laser oscillating on the 351.1-nm line falls on an 8-
cm-long nonlinear crystal of potassium dihydrogen phos-
phate, where some of the incident photons split into two
lower-frequency signal and idler photons of frequencies
co~ and m2, such that

COO =CO i + C02.

Pinhole

'v

M2
D2

Amp.
8c
Disc.

Counter

phasized that the signal and idler photon s have no
definite phase, and are therefore mutually incoherent, in
the sense that they exhibit no second-order interference
when brought together at detector D1 or D2. However,
fourth-order interference eff'ects occur, as demonstrated
by the coincidence counting rate between D 1 and D2.
The experiment has some similarities to another, recently
reported, two-photon interference experiment in which
fringes were observed and measured, but without the use
of a beam splitter.
Although the sum frequency co &

+ m2 is very well
defined in the experiment, the individual down-shifted
frequencies coi, co2 have large uncertainties, that, in prac-
tice, are largely determined by the pass bands of the in-
terference filters IF inserted in the down-shifted beams,
as shown in Fig. 1. These pass bands are of order
5x10' Hz, corresponding to a coherence time for each
photon of order 100 fs. Needless to say, the two-photon
probability amplitudes at the detectors D1,D2 are ex-
pected to interfere only if they overlap to this accuracy
or better. We start by examining how this interference
arises.
Let us label the field modes on the input sides of the

beam splitter by 01,02 and on the output sides by 1,2
and suppose first that the light is monochromatic. If we
take the state at the input resulting from one degenerate
down-conversion to be the two-photon Fock state

~ tot, 102), then one can show from general arguments
that the state on the output side of the beam splitter is

The two signal and idler photons are directed by mirrors
Ml and M2 to pass through a beam splitter BS as
shown, and the superposed beams interfere and are
detected by photodetectors D1 and D2. We measure the
rate at which photons are detected in coincidence, when
the beam splitter is displaced from its symmetry position
by various small distances ~c6'z. It should be em-

UV
KDP

o I

Q) I

Pinhole IFl

Dl

Amp.

Disc.

Coincidence
Counter

Counter

FIG. 1. Outline of the experimental setup.

PDP
1 1/23+

2044 1987 The American Physical Society

Hong-Ou-Mandel interference



campo 2 campo 2
l/2

BS

L R 2 independent sources of 
single photons

D. Felinto et al., “Conditional control of the quantum states of remote atomic memories for Q. networking”, Nature Physics 2,  844 (2006)  
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Figure 2 Probabilities p11 and p1122 of coincidence detection as functions of the
number N of trials waited between the independent preparation of the two
ensembles (L, R) with one excitation each. The filled squares give the joint
probability p11 of simultaneously preparing the two ensembles.The open circles give
the joint probability p1122 of preparing the two ensembles and detecting a pair of
photons, one in each output of the beam splitter, in fields 2L,2R. The error bars
indicate ±

√
C photon counting noise, where C is the number of counts. The total

number of counts for the evaluation of p11 was 234,244 and 614 for p1122. The total
number of trials was 3.36×109, corresponding to 6 h of data taking. The
polarizations for fields 2L,2R were set to be orthogonal.

storing a collective spin flip (6S1/2,F = 3), and the excited level
|e〉 (6P3/2,F = 4). Then a weak write pulse, lasting 38 ns, excites
the g → e transition. With a small probability q1 % 0.005 & 1,
the atomic ensemble spontaneously emits a photon (field 1) on
the e → s transition, into the solid angle of our detection system.
For our experimental conditions, the detection of this first photon
heralds the storage of an excitation in a collective, symmetric mode
of the whole ensemble4,15,32.

This collective excitation can then be retrieved with high
probability4,15 by a strong read pulse (38 ns long and resonant to
the s → e transition) counterpropagating with respect to the write
beam; see Fig. 1b. The read pulse results in the generation of a
second photon (field 2) in the direction opposite to field 1 (ref. 11).
For both ensembles, a detection in field 1 occurs with probability
p1 =0.12% and is followed by a detection in field 2 with conditional
probability pc % 8.5%, which corresponds, after taking the losses in
the field-2 channels into account, to qc % 34% retrieval efficiency
for the collective mode at the output of the ensemble15. If no
detection in field 1 is registered in a given trial, the read pulse is
fired to optically pump the atoms back to their initial condition. For
the chosen p1, the normalized intensity cross-correlation function
between fields 1 and 2 is measured to be approximately g12 % 23
for both ensembles10,15, corresponding to a field 2 well within
the single-photon regime, with a large suppression of its two-
photon component15. For our system, g12 > 2 is already a strong
indication of non-classical correlations between fields 1 and 2
(ref. 10). The parameter w quantifies this suppression by examining
the probability of generating two photons in the same pulse,
normalized by an equally bright Poisson-distributed source33.
Classical fields must satisfy the Cauchy–Schwarz inequality w ≥ 1;
for independent coherent states, w = 1, whereas for thermal fields,
w = 2 (ref. 33). The parametric dependence of w on g12 for our
system was investigated in detail in refs 15,33, from which we infer
w ≈ 0.17 for g12 = 23.
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Figure 3 Conditional joint-detection probability p c
22 (τ ) of recording events in

both D2a and D2b, once the two ensembles are ready to fire, as a function of the
time difference τ between the two detections. The filled squares (open circles)
show the results when the field-2 outputs of the two ensembles are combined with
parallel (orthogonal) polarizations. The dashed line is obtained from a gaussian fit of
the orthogonal-polarization data, with half-width at 1/e equal to T= 18.4±0.2 ns.
The solid line is obtained from the dashed one by multiplying it by 1−Vfit cos(!ωτ ),
with Vfit = 0.80 and !ω/2π= 4 MHz. The error bars indicate ±

√
C photon

counting noise, where C is the number of counts.

Fields 1L,1R are guided to the respective detectors (D1L,D1R)
(Fig. 1a). The field-2 outputs of the two ensembles, on the other
hand, are combined at a fibre beam splitter, whose outputs are
then directed to two detectors D2a and D2b (Fig. 1b). To exploit
the quantum memory to speed-up probabilistic quantum protocols
that require concurrent state preparation in two atomic ensembles,
we have designed and implemented a custom logic circuit that
enables conditional control of the writing, storing and reading
operations for the atomic excitations. On receipt of a field-1
detection signal from one ensemble, the circuit gates off the write
and read pulses for that ensemble, thereby storing a collective
excitation in the atoms15,19,33. The write–read pulse train in the other
ensemble is not affected. The storage stops and the excitations in the
ensembles are read out when either of the following events occurs:
(1) a field-1 photon is detected in the second system, prompting the
circuit to release read pulses into the first and second ensembles,
thereby simultaneously retrieving the stored excitations from both
ensembles; (2) a predetermined maximal storage time !tmax set
in the circuit is reached in the first ensemble. Then, the storage
ceases, and the ensembles are optically pumped back to the original
condition. The logic circuit returns to its dormant state, passing all
the write and read pulses to the ensembles, until the next field-1
detection signal triggers its function.

Our logic circuit is designed specifically to increase p11, the
probability of having excitations stored simultaneously in each
ensemble. Given an initial event in one ensemble, the filled squares
in Fig. 2 show how p11 increases as a function of the number of
trials N of duration !ttrial = 525 ns that we wait for the other
ensemble. The values in this curve were obtained by carrying out
the experiment using a maximum number of trials Nmax = 22
(corresponding to our specific !tmax = 12 µs), recording a file with
the whole history of events, counting the number of events where
the second ensemble was prepared up to N trials after the first one,
and then dividing this number by the total number of trials Nt .
After 23 pulses, we observe an increase F11 % 44 in p11, close to the
expected value of F11 = (2Nmax +1) = 45 for the case p1 & 1 (see
the Methods section). Note that for our experimental conditions,

846 nature physics VOL 2 DECEMBER 2006 www.nature.com/naturephysics
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Motivation*

* Original proposal is hard to scale up due to rapid increase in required 
physical resources, but proposals along these lines have evolved since then.



Fock-State Superradiance

 

Experimental Fock-State Superradiance

L. Ortiz-Gutiérrez,1 L. F. Muñoz-Martínez,1 D. F. Barros,2 J. E. O. Morales,1 R. S. N. Moreira,1 N. D. Alves,1

A. F. G. Tieco,1 P. L. Saldanha,2 and D. Felinto1,*
1Departamento de Física, Universidade Federal de Pernambuco, 50670-901 Recife, Pernambuco, Brazil

2Departamento de Física, Universidade Federal de Minas Gerais, 30161-970 Belo Horizonte, Minas Gerais, Brazil

(Received 5 July 2017; published 23 February 2018)

Superradiance in an ensemble of atoms leads to the collective enhancement of radiation in a particular
mode shared by the atoms in their spontaneous decay from an excited state. The quantum aspects of this
phenomenon are highlighted when such collective enhancement is observed in the emission of a single
quantum of light. Here we report a further step in exploring experimentally the nonclassical features of
superradiance by implementing the process not only with single excitations, but also in a two-excitation
state. Particularly, we measure and theoretically model the wave packets corresponding to superradiance in
both the single-photon and two-photon regimes. Such progress opens the way to the study and future
control of the interaction of nonclassical light modes with collective quantum memories at higher photon
numbers.

DOI: 10.1103/PhysRevLett.120.083603

The full quantum mechanical treatment of spontaneous
emission from an ensemble of atoms may lead to
enhanced emissions in particular modes [1]. This phe-
nomenon, known as superradiance, highlights the coher-
ent nature of spontaneous emission. On the other hand, it
was clear since the first experiments [2,3] that several of
its features could be understood through classical models
[4]. Such classical analogues, however, cannot be applied
to recent experiments observing the superradiant collec-
tive acceleration of emission with just a single excitation
participating in the process [5,6]. This single-photon
superradiance is a direct manifestation of the wave-
particle duality, with a single particle being emitted faster
due to the interference of the probability amplitudes of
emission by each atom. Such a regime can be approxi-
mated by exciting an atomic sample with weak laser light
[7,8], although the photon statistics in this scheme do not
present quantum correlations.
Here we move further, exploring superradiance with

particular collective quantum states, and report its imple-
mentation in both the single- and two-excitation regimes.
We use the experimental scheme proposed in the Duan-
Lukin-Cirac-Zoller (DLCZ) protocol for long-distance
quantum communication [9] that resulted in a long line
of works [10–16] exploring quantum correlations in the
interaction of single photons with collective atomic
memories. In our experiments, either one or two excita-
tions are initially stored in the atomic memory. The
readout process results in the superradiant emission of
one or two photons, respectively, with properties that
depend on the quantum state of the memory. Due to
collective enhancement, the photon emission in the read
process is highly directional, which permits efficient

detection by selecting the appropriate mode. Our main
purpose is to observe the increase of the photon emission
rate due to superradiance, together with the characteri-
zation of the Fock-state regimes with one or two photons
being emitted by the memory. To do so, we measure the
wave packets of the single-photon and of the biphoton
emissions, evidencing superradiant acceleration in both
cases, and we perform a photon statistics analysis that
indicates the presence of quantum correlations.
In the DLCZ scheme, an ensemble of three-level atoms

in Λ configuration is initially prepared with all atoms in
level jgi (Fig. 1). A write beam induces the transition of
atoms to level jsi through the emission of photons in a
selected mode 1. The system state at this stage can be
written as

jΨa;1i ¼
ffiffiffiffiffiffiffiffiffiffiffi
1 − p

p X∞

n¼0

pn/2jna; n1i; ð1Þ

with the storage of n excitations in a collective mode a, and
n photons in mode 1. The parameter p indicates, for p ≪ 1,
the probability of having a single excitation both in the
ensemble and in the light field. Using non-number-resolv-
ing detection with low efficiency (the usual case), a single
detection in field 1 ideally projects the ensemble in the state

jψ1i ∝ j1aiþ p1/2j2aiþ pj3aiþ % % % : ð2Þ

On the other hand, two detections in field 1 would result in
the state

jψ2i ∝ j2aiþ p1/2j3aiþ % % % : ð3Þ

PHYSICAL REVIEW LETTERS 120, 083603 (2018)

0031-9007=18=120(8)=083603(5) 083603-1 © 2018 American Physical Society
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superradiance is a direct manifestation of the wave-
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emission by each atom. Such a regime can be approxi-
mated by exciting an atomic sample with weak laser light
[7,8], although the photon statistics in this scheme do not
present quantum correlations.
Here we move further, exploring superradiance with

particular collective quantum states, and report its imple-
mentation in both the single- and two-excitation regimes.
We use the experimental scheme proposed in the Duan-
Lukin-Cirac-Zoller (DLCZ) protocol for long-distance
quantum communication [9] that resulted in a long line
of works [10–16] exploring quantum correlations in the
interaction of single photons with collective atomic
memories. In our experiments, either one or two excita-
tions are initially stored in the atomic memory. The
readout process results in the superradiant emission of
one or two photons, respectively, with properties that
depend on the quantum state of the memory. Due to
collective enhancement, the photon emission in the read
process is highly directional, which permits efficient

detection by selecting the appropriate mode. Our main
purpose is to observe the increase of the photon emission
rate due to superradiance, together with the characteri-
zation of the Fock-state regimes with one or two photons
being emitted by the memory. To do so, we measure the
wave packets of the single-photon and of the biphoton
emissions, evidencing superradiant acceleration in both
cases, and we perform a photon statistics analysis that
indicates the presence of quantum correlations.
In the DLCZ scheme, an ensemble of three-level atoms

in Λ configuration is initially prepared with all atoms in
level jgi (Fig. 1). A write beam induces the transition of
atoms to level jsi through the emission of photons in a
selected mode 1. The system state at this stage can be
written as

jΨa;1i ¼
ffiffiffiffiffiffiffiffiffiffiffi
1 − p

p X∞

n¼0

pn/2jna; n1i; ð1Þ

with the storage of n excitations in a collective mode a, and
n photons in mode 1. The parameter p indicates, for p ≪ 1,
the probability of having a single excitation both in the
ensemble and in the light field. Using non-number-resolv-
ing detection with low efficiency (the usual case), a single
detection in field 1 ideally projects the ensemble in the state

jψ1i ∝ j1aiþ p1/2j2aiþ pj3aiþ % % % : ð2Þ

On the other hand, two detections in field 1 would result in
the state
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wave packets of the single-photon and of the biphoton
emissions, evidencing superradiant acceleration in both
cases, and we perform a photon statistics analysis that
indicates the presence of quantum correlations.
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in Λ configuration is initially prepared with all atoms in
level jgi (Fig. 1). A write beam induces the transition of
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written as
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The Fock states j1ai and j2ai are then obtained as limits of
the states jψ1i and jψ2i, respectively, when p → 0.
Differently from previous superradiant experiments, then,
with this scheme we can investigate the phenomenon of
superradiance with a controlled number of excited atoms in
particular collective states.
The ensemble of cold rubidium-87 atoms in our experi-

ment is obtained from a magneto-optical trap, turned off for
2 ms. After waiting 1 ms for the complete decay of the trap
magnetic field, a sequence of 1000 sampling periods of
1 μs duration follows. Residual dc magnetic fields are
canceled following the method of Ref. [17]. The temper-
ature of the atoms is below 1 mK so that their motion can be
neglected during a sampling period. At each period an
optical pumping field of 200 ns duration [Figs. 1(a) and
1(b)] prepares the atoms at the jgi¼ j5S1/2;F¼2;mF¼−2i
state. This beam is red-detuned 32 MHz from the F ¼
2 → F0 ¼ 3 transition and has circular σ− polarization,
being retroreflected to reduce its mechanical action over the
atoms. Pulse durations in the experiment are controlled by
acousto-optic modulators and two 10 GHz in-fiber Mach-
Zehnder intensity modulators [Fig. 1(a)].
Once in state jgi, the atoms are excited during 50 ns by a

circular, σþ write pulse 22 MHz red-detuned from the
jgi → jei transition, with jei ¼ j5P3/2; F ¼ 2; mF ¼ −1i.
With small probability, n atoms may be transferred to the
state jsi ¼ j5S1/2; F ¼ 1; mF ¼ 0i, spontaneously emitting
n σ− photons in field 1 [Figs. 1(c) and 1(d)]. These are
coupled to a single-mode fiber beam splitter (FBS), leading
to two detectors (D1a,D1b) for the projective measurements
resulting in storage of jψ1i or jψ2i.
After a storage time of 200 ns, the atoms are excited by a

strong, 30 ns read pulse resonant with jsi → jei. This pulse

maps the stored collective state into the state of a second
light mode, field 2, leaving the whole ensemble again in
state jgi. During the write process, atoms can also decay to
other states, but these do not contribute to field 2 [5,18].
Field 2 is then directed to the analysis by a time-
multiplexing detection (TMD) apparatus, consisting of a
sequence of two FBSs with a fiber loop delaying for 100 ns
one of the arms in the middle. The outputs of the second
FBS reach two detectors (D2a, D2b). This apparatus
corresponds to a cascade of beam splitters leading to four
detectors [19], as in the inset of Fig. 1(a), with D0

2a, D
0
2b

representing the 100 ns delayed responses of D2a, D2b.
Field 1 is selected by an optical fiber in a Gaussian mode

with a 4σ diameter of 150 μm in the ensemble, forming an
angle of about 2° with the direction of the write field, which
has a 4σ diameter of 420 μm. The read and field-2 beams
are mode matched and counterpropagating to the write and
field-1 beams, respectively. This configuration results in
single-mode superradiance with negligible propagation
effects [5,6].
The photon-number analysis of field 2 conditioned on

one [Fig. 1(c)] or two [Fig. 1(d)] detections in field 1 are
presented in Figs. 2(a) and 2(b), respectively, as a function
of the probability p1 for a detection in field 1 (ratio between
the number of detections in field 1 and the number of trials).
Pi;j indicates the probability for j detections in field 2
conditioned on i detections in field 1. In this way, Fig. 2(a)
plots the values of P1;j, related to jψ1i, and Fig. 2(b) the
values of P2;j, related to jψ2i. The two panels were
obtained from the same data set. Error bars come from
the uncertainty in the accumulation of detection events,
proportional to the square root of the number of detections.
To compare Fig. 2 to the predictions of Eq. (1), note that

p1 ≈ η1p, with η1 the detection efficiency. As p1 decreases,
with decreasing write intensities, we observe two plateaus
forming for P1;1 and P2;2, since those quantities should be

FIG. 1. (a) Experimental setup. PBS stands for polarizing beam
splitter; IM for in-fiber intensity modulator; TMD for time-
multiplexing detection; and λ/2 and λ/4 for half- and quarter-wave
plates, respectively. The inset shows the effective configuration of
detectors of the TMD apparatus. (b) Pulse sequence for each
measurement cycle. (c) and (d) provide the level scheme and
fields for single- and two-photon superradiance, respectively.

FIG. 2. Probabilities Pi;j to detect j photons in field 2
conditioned on the detection of i photons in field 1 as a function
of the probability p1 to detect one photon in field 1, with (a) i ¼ 1
and (b) i ¼ 2. Circles, squares, and diamonds plot the proba-
bilities of detecting one, two, and three photons in field 2. Solid
lines are linear fits. Black dashed lines provide the values for the
plateau of Pi;1 [0.0085 for (a) and 0.0170 for (b)]. Red and blue
dashed lines give the square and cube, respectively, of the black
one, corresponding to the Poisson levels for two- and three-
photon components.
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Heralded Entanglement between Atomic Ensembles: Preparation, Decoherence, and Scaling
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Heralded entanglement between collective excitations in two atomic ensembles is probabilistically
generated, stored, and converted to single-photon fields. By way of the concurrence, quantitative
characterizations are reported for the scaling behavior of entanglement with excitation probability and
for the temporal dynamics of various correlations resulting in the decay of entanglement. A lower bound
of the concurrence for the collective atomic state of 0:9! 0:3 is inferred. The decay of entanglement as a
function of storage time is also observed, and related to the local dynamics.
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Beyond a fundamental significance, quantum control of
entanglement between material systems is an essential
capability for quantum networks and scalable quantum
communication architectures [1,2]. In recent years, signifi-
cant advances have been achieved in the control of the
quantum states of atomic systems, including entanglement
of trapped ions [3,4] and between macroscopic spins [5].
By following the seminal paper of Duan, Lukin, Cirac, and
Zoller (DLCZ) [6], entanglement between single collective
excitations stored in two remote atomic ensembles has also
been demonstrated [7]. In the DLCZ protocol, entangle-
ment is created in a probabilistic but heralded way from
quantum interference in the measurement process [8–10].
The detection of a photon from one or the other atomic
ensemble in an indistinguishable fashion results in an
entangled state with one collective spin excitation shared
coherently between the ensembles. Such entanglement has
been critical for the initial implementation of functional
quantum nodes for entanglement distribution [11], for the
investigation of entanglement swapping [12] and for light-
matter teleportation [13].

Because of the relevance to quantum networking tasks,
it is important to obtain detailed characterizations of the
physical processes related to the creation, storage, and
utilization of heralded entanglement. Towards this end,
significant advances have been demonstrated in the gen-
eration of photon-pairs [14,15] and the efficient retrieval
of collective excitation [16,17]. Moreover, decoherence
processes for a single atomic ensemble in the regime of
collective excitation have been investigated theoreti-
cally [18] and a direct measurement of decoherence for
one stored component of a Bell state recently performed
[19]. However, to date no direct study has been reported
for the decoherence of an entangled system involving
two distinct atomic ensembles, which is a critical aspect
for the implementation of elaborate protocols [20–22].
The decoherence of entanglement between ensembles has
been shown in recent setups, through the decay of the
violation of a Bell inequality [11] and the decay of the
fidelity of a teleported state [13]. However, a quantitative
analysis was not provided since these setups involved

many others parameters, such as phase stability over long
distances.

In this Letter, we report measurements that provide a
detailed and quantitative characterization of entanglement
between collective atomic excitations. Specifically, we
determine the concurrence C [23] as a function of the
normalized degree of correlation g12 [16] for the ensem-
bles, including the threshold g"0#12 for entanglement (C> 0).
We also map the decay of the concurrence C"!# as a
function of storage time for the entangled state, and inter-
pret this decay by measuring the local decoherence on both
ensembles taken independently. Compared to Ref. [7],
these observations are made possible by a new system
that requires no active phase stability and that implements
conditional control for the generation, storage, and readout
of entangled atomic states.

Our experiment is illustrated in Fig. 1. A single cloud of
cesium atoms in a magneto-optical trap is used; two en-
sembles are defined by different optical paths 1 mm apart
[11,24]. This separation is obtained by the use of birefrin-
gent crystals close to the cloud, which separate orthogonal
polarizations [25]. At 40 Hz, the trap magnetic field is
switched off for 7 ms. After waiting 3 ms for the magnetic
field to decay, the two samples are simultaneously illumi-
nated with 30 ns-long and 10 MHz red-detuned write
pulses, at a rate of 1.7 MHz. Given the duty cycle of the
experiment, the effective rate is 180 kHz. Spontaneous
Raman scattered fields induced by the write beams are
collected into single-mode fibers, defining for each en-
semble optical modes that we designate as fields 1U;D
with 50 "m waist and a 3$ angle relative to the direction
of the write beams [15,16]. Fields 1U;D are frequency
filtered to block spontaneous emission from atomic tran-
sitions jei ! jgi, which do not herald the creation of a
collective excitation. After this stage, and before detection,
fields 1U;D are brought to interfere on a polarizing beam-
splitter. A detection event at D1a;1b that arises indistin-
guishably from either of the fields 1U;D projects the atomic
ensembles into an entangled state where, in the ideal case,
one collective excitation is coherently shared between the
U, D ensembles [6,7].
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In the ideal case of small excitation probability, the
atom-field 1 joint state can be written for each ensemble:

 j!i ! j0aij01i"
!!!!
!

p j1aij11i"O#!$; (1)

with jn1i the state of the field 1 with n photons and jnai the
state of the ensemble with n collective excitations. Upon a
detection event at D1a;1b, in the ideal case, the atomic state
is projected into

 j!U;Di!
1!!!
2

p #j0aiUj1aiD%ei"j1aiUj0aiD$"O# !!!!
!

p $; (2)

where j0aiU;D; j1aiU;D refers to the two ensembles U, D
with 0,1 collective excitations, respectively [6]. The % sign
is set by the detector that records the heralding event. The
overall phase " is the sum of the phase difference of the
write beams at the U and D ensembles and the phase
difference acquired by fields 1 in propagation from the
ensembles to the beam splitter. To achieve entanglement,
this phase must be constant from trial to trial [26]. In order
to meet this requirement, the initial demonstration reported
in [7] employed auxiliary fields to achieve active stabiliza-
tion for various phases for two ensembles located in dis-
tinct vacuum apparatuses. By contrast, in our current setup
[Fig. 1(a)], " is determined only by the differential phase
for the two paths with orthogonal polarizations defined by
the birefringent crystals [25]; our small setup has sufficient
passive stability without need of adjustment or compensa-
tion as the phase does not change by more than a few
degrees over 24 h.

To verify operationally entanglement between the U, D
ensembles, the respective atomic states are mapped into
photonic states by applying simultaneously read pulses in
the configuration introduced in Ref. [15], as depicted in
Fig. 1(b). The delocalized atomic excitation is retrieved
with high efficiency thanks to collective enhancement
[6,16] and, in the ideal case, j!U;Di would be mapped
directly to the photonic state of fields 2U;D with unity
efficiency and no additional components. Stability for the
phase difference of the read beams and of fields 2U;D is also
required in this process; it is again achieved by the passive
stability of our current scheme [25]. Since entanglement
cannot be increased by local operations [27], the entangle-
ment for the atomic state will always be greater than or
equal to that measured for the light fields.

A model-independent determination of entanglement
based upon quantum tomography of the fields 2U;D has
been developed in Ref. [7]. The model consists of recon-
structing a density matrix, ~#2U;2D , obtained from the full
density matrix by restriction to the subspace with no more
than one photon per mode. We also assume that all off-
diagonal elements between states with different numbers
of photons vanish. The model thus leads to a lower bound
for entanglement. As detailed in Ref. [7], ~#2U;2D can be
written in the photon-number basis jnijmi with fn;mg !
f0; 1g as follows:

 ~# 2U;2D ! 1

P

p00 0 0 0
0 p01 d 0
0 d& p10 0
0 0 0 p11

0
BB@

1
CCA: (3)

Here, pij is the probability to find i photons in mode 2U and
j in mode 2D; d is the coherence term between the j1ij0i
and j0ij1i states; and P ! p00 " p01 " p10 " p11. From
~#2U;2D , one can calculate the concurrence C, which is a
convenient monotone measurement of entanglement rang-
ing from 0 for a separable state to 1 for a maximally
entangled state [23]:

 C ! max#0; C0$ with C0 !
1

P
#2jdj' 2

!!!!!!!!!!!!!!
p00p11

p $:
(4)

In the regime of low excitation and detection probabilities
in which the experiment is performed, the vacuum p00 can
be approximated by p00 ( 1' pc, while the terms p01 and
p10 are given by p10 ! p01 ! pc=2. pc is the conditional
probability of detecting a photon in field 2 from one
ensemble following a detection event for field 1.

Experimentally, we reconstruct ~#2U;2D and then calculate
C by using two configurations for the detection of fields
2U;D, corresponding to two settings of the #$=2$v wave
plate shown in Fig. 1(b). The diagonal elements of ~#2U;2D
are determined from measurements of the photon statistics
for the separated fields 2U, 2D, i.e., by detecting indepen-
dently each field. To access the coherence term d, fields
2U;D are coherently superimposed and the count rates from
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(a) Entanglement generation

(b) Entanglement verification
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FIG. 1 (color online). (a) A weak write pulse is split into two
paths separated by 1 mm and excites simultaneously two atomic
samples, U, D. The resulting fields 1U;D are combined at the
polarizing beam splitter (PBS) and sent to the single-photon
detectors D1a;1b. A detection event at D1a or D1b heralds the
creation of entanglement. (b) After a storage time %, entangle-
ment is verified by mapping the atomic state to propagating
fields 2U;D by way of read pulses. Tomography is then achieved
in two steps, as described in the text. The atomic cloud is initially
prepared in the ground state jgi. fjgi; jsi; jeig denote the levels
fj6S1=2; F ! 4i; j6S1=2; F ! 3i; j6P3=2; F ! 4ig in atomic Cs.
Note that the fields 1U;D and 2U;D are detected with a small
angle relative to the classical beams, which is not represented
here for the sake of simplicity.
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the resulting interference are recorded as a function of the
relative phase between the 2U;D fields. It can be shown that
d ’ V!p10 " p01#=2$ Vpc=2 [7], where V is the visibility
of the interference fringe.

To investigate the scaling of entanglement with excita-
tion probability !, we determine C for various values of !
for fixed memory time " % 200 ns. As ! increases, higher
order terms in the expansion of Eq. (2) cannot be neglected,
precisely as in parametric down conversion. A convenient
parameter to assess the excitation regime of each ensemble
is the normalized intensity cross correlation function g12
between field 1 and field 2 [16], defined as g12 %
p12=!p1p2# with p12 the joint probability for detection
events from field 1 and 2 in a given trial and pi the
probability for unconditional detections in field i. In the
ideal case, this function is related to the excitation proba-
bility ! by g12 % 1" 1=!, where g12 > 2 defines the
nonclassical border in the ideal case [14] and g12 & 2
being the single-excitation regime for the ensembles.

Expressing the two-photon component for the two en-
sembles as p11 % !p2

c $ p2
c=g12, we rewrite the concur-

rence as

 C ’ max'0; pc!V ( 2
!!!!!!!!!!!!!!!!!!!!!!!!!!!
!1( pc#=g12

q
#); (5)

where g12 is for either ensemble alone, with g!U#
12 % g!D#

12 *
g12 assumed. The visibility V can be expressed in terms of
g12 as the higher order terms act as a background noise.
With !1=2#p1p2 a good estimation for the background, the
visibility can be written as [25]

 V ’ #
p12 ( p1p2

p12 " p1p2
% #

g12 ( 1

g12 " 1
; (6)

where # is the overlap between fields 2U;D [28]. In the limit
of near zero excitation, as g12 goes to infinity, the con-
currence reaches its asymptotic value given by the retrieval
efficiency #pc [29].

Figure 2 presents our measurements of the concurrence
C as a function of g12. As the excitation probability is
decreased, g12 increases as does the entanglement. The
threshold to achieve C> 0 is found to be g!0#12 ’ 7, corre-
sponding to a probability p ’ 1:2+ 10(2 per trial for the
creation of the heralded entangled state and to a prepara-
tion rate $2 kHz. Note that C % 0 (or C not greater than
zero) does not imply that there is no entanglement, only
that any possible entanglement is not detected by our
protocol, which provides a lower bound for the entangle-
ment. More importantly, in an infinite dimensional Hilbert
space, entangled states are dense in the set of all states [30],
so that zero entanglement is not provable for an actual
experiment by way of the concurrence.

To confirm the model leading to Eq. (6), the inset gives
the measured visibility V as a function of g12. The solid
line is a fit according to Eq. (6) with free parameter #,
leading to an overlap # % 0:95, 0:01, in agreement with
the value # % 0:98, 0:03 obtained from an independent
two-photon interference measurement. With the fitted

value of # and with the independently determined value
of the conditional probability pc % 0:135, 0:005 from
measurements performed on each ensemble separately,
we compare our measurements of C with the prediction
of Eq. (5) (solid line in Fig. 2) and find good agreement.

Table I provides the diagonal elements of the density
matrix ~$2U;2D and the concurrence for the case g12 % 60,
4 corresponding to a probability to create entanglement
p % 9+ 10(4 per trial (160 Hz). A value C % 0:092,
0:002 is directly measured at detectors D2a, D2b without
correction. By way of the independently determined propa-
gation and detection efficiencies, we infer the density
matrix ~$output

2U;2D
for fields 2U, 2D at the output of the ensem-

bles, from which we obtain a concurrence Coutput
2U;2D

% 0:35,
0:10. This value exceeds the published state of the art by
2 orders of magnitude [7]. This leap underlines the
progress obtained in terms of suppression of the two-

FIG. 2 (color online). Concurrence C as a function of the
normalized cross correlation function g12, for the two possible
heralding events (detection at D1a or D1b). The solid line is
obtained from Eq. (5) with the fitted overlap (see inset) and
assuming an independently-measured retrieval efficiency at
13.5%. The dotted line corresponds to C0. Inset: Average visi-
bility of the interference fringe between the two field-2 modes.
The solid line is a fit using the expression given by Eq. (6), with
the overlap # fitted to 0:95, 0:01.

TABLE I. Diagonal elements and concurrence of the density
matrices for fields 2U;D, without and with correction for propa-
gation losses and detection efficiencies. The last column pro-
vides the estimated elements and concurrence for the atomic
state by considering the readout efficiency % at g12 % 60, 4.

~$2U;2D ~$output
2U;2D

~$U;D

p00 0:864, 0:001 0:54, 0:08 0, 0:3
p10 !6:47, 0:02# + 10(2 !22, 4# + 10(2 0:5, 0:15
p01 !7:07, 0:02# + 10(2 !24, 4# + 10(2 0:5, 0:15
p11 !2:8, 0:2# + 10(4 !3, 2# + 10(3 0:015, 0:025
C 0:092, 0:002 0:35, 0:1 0:9, 0:3
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Perspectives for laboratory implementation of the Duan-Lukin-Cirac-Zoller
protocol for quantum repeaters
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We analyze the efficiency and scalability of the Duan-Lukin-Cirac-Zoller (DLCZ) protocol for quantum
repeaters focusing on the behavior of the experimentally accessible measures of entanglement for the system,
taking into account crucial imperfections of the stored entangled states. We calculate then the degradation of
the final state of the quantum-repeater linear chain for increasing sizes of the chain, and characterize it by a
lower bound on its concurrence and the ability to violate the Clausner-Horne-Shimony-Holt inequality. The
states are calculated up to an arbitrary number of stored excitations, as this number is not fundamentally bound
for experiments involving large atomic ensembles. The measurement by avalanche photodetectors is modeled
by “ON/OFF” positive operator-valued measure operators. As a result, we are able to consistently test the
approximation of the real fields by fields with a finite number of excitations, determining the minimum number
of excitations required to achieve a desired precision in the prediction of the various measured quantities. This
analysis finally determines the minimum purity of the initial state that is required to succeed in the protocol as
the size of the chain increases. We also provide a more accurate estimate for the average time required to succeed
in each step of the protocol. The minimum purity analysis and the new time estimates are then combined to trace
the perspectives for implementation of the DLCZ protocol in present-day laboratory setups.
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I. INTRODUCTION

Ten years ago, Duan, Lukin, Cirac, and Zoller (DLCZ) pro-
posed a new protocol to distribute quantum entanglement over
long distances [1]. The DLCZ protocol for quantum repeaters
represented a major theoretical development, indicating how
to implement various tasks in quantum information using
present-day technology and well-established experimental
techniques. The new ideas introduced in the original paper
inspired a burst of experimental activity. Presently, many
groups have already demonstrated the basic building block
of the protocol: the entanglement between a single photon and
a collective excitation stored in an atomic ensemble [2–9].
Entanglement among two remotely located ensembles of
atoms [10] and the use of two pairs of ensembles to obtain
polarization entanglement between two distant sites [11] were
both demonstrated along the lines of the original proposal.
A first attempt to implement the entanglement connection
step of the protocol was also reported [12]. As a conse-
quence of this overall development, various new ideas were
proposed and implemented based on the new experimental
capabilities revealed by the DLCZ protocol. Examples of such
developments in different directions include the proposal of
a new quasideterministic single photon source [7,13,14], the
storage of single photons and of photonic entanglement by
atomic ensembles [15–17], the heralded generation of more
complex entangled states between various ensembles [18,19],
and even the idea to use ensembles of solid-state memories for
single-photon storage [20].

Our main interest here, however, is the development of
the original DLCZ protocol, with its characteristic sequence
of entanglement-swapping operations over a linear chain of
atomic ensembles. A particularly important aspect of this
protocol is that all its operations rely on single detections
of photons. It represents then a quantum-repeater protocol that

works in lowest possible order in the probabilities to detect
photons, which is quite suitable for present-day technologies.
If these detection probabilities are high, it is clear nowadays
that there are other options of more efficient quantum-repeater
protocols [21–24]. Even though the DLCZ protocol contains
already some built-in entanglement purification scheme, its
main drawback is still the fast degradation of the entangled
state, with the size of the repeater chain, by contamination
with vacuum and errors due to higher-order excitations. This
can be mitigated by modifying the protocol to include multiple
detections in various ways, such as through coincidence mea-
surements [22,24] or including extra entanglement purification
procedures [21], which become feasible options once the
detection efficiencies get higher, on the order of 90%.

These protocols also aim at mitigating the large dependence
of the original DLCZ protocol on the interferometric stability
of the optical pathways [22,24]. However, even though this
interferometric sensitivity is quite challenging experimentally,
it has not limited, so far, the experimental implementation
of the protocol. Active interferometric stabilization over
12 meters of fibers for about an hour have been implemented
for the generation of entanglement between two remote atomic
ensembles [10,25]. More importantly, passive stabilization
for hours, after careful alignment of the relative phases
between orthogonal linear polarizations in single-mode optical
fibers, was obtained for two independent optical channels
connecting two independent pairs of ensembles, each located
a couple of meters apart [25]. This is the basic apparatus to
implement quantum key distribution in the DLCZ protocol, as
highlighted by the successful violation of the Clausner-Horne-
Shimony-Holt (CHSH) inequality [26] on Ref. [11]. The active
stabilization of polarization channels in optical fibers [27]
may finally enhance even more the phase stability in such
experiments, enabling further tests of the protocol in longer,
more complex chains.
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how such curves describe a region with larger and larger p′
0 as

np is increased. For np = 8, we have already a difference of
only 1% in the determination of the threshold p′

0, with respect
to the same result obtained with np = 7. In the following, we
are going to indicate such maximum excitation probability of
the initial state for which entanglement can still be verified by
p(n)

max, with n indicating the corresponding swapping stage.
Increasing to np = 9, the change to the value of p(0)

max is
negligible. Another interesting point to note is that, for np = 2,
no threshold is observed at all for any p′

0, indicating that such
threshold does not come from a slight perturbation on the
very-low-excitation condition. It does require a considerable
amount of components with larger numbers of excitations.

In order to provide more insight on the way the larger
np affects the concurrence measurement, we provide also in
Fig. 4 the theoretical predictions for all the measured quantities
behind the determination of C0. Figure 4(b) plots the visibility
V (0) of the interference measurement described in Fig. 3(b).
Figures 4(c) and 4(d) provide the probabilities for measuring
one (P (0)

10 + P
(0)
01 ) or two (P (0)

11 ) detections, respectively, with
the pair of detectors in the apparatus described in Fig. 3(a).
The remaining quantity to be determined, P

(0)
00 , is obtained

from the normalization condition. The larger np results then
in a decrease of the visibility together with an increase in the
probability to detect photons in the reading process as p′

0 is
increased. The rate of change of both V (0) and P

(0)
10 + P

(0)
01 with

np, however, is considerably smaller than that for P
(0)
11 . The fast

increase of P
(0)
11 , due to the contribution of higher-order terms,

eventually leads to the failure to verify entanglement above
p(0)

max (see Ref. [48] for a clear discussion of the crucial role
P

(0)
11 has for the entanglement verification procedure).

Figures 4(b) and 4(c) can also be compared directly
to experimental curves in Refs. [46,47], respectively. As
discussed in Ref. [47], the curve presented in Fig. 4(c) is
particularly revealing of the passage from a regime dominated
by higher-order excitations to a regime of a single excitation
stored in the pair of ensembles, and then to a regime dominated
by noise. The quantity P

(0)
10 + P

(0)
01 provides the conditional

probability of detecting a photon in field 2 once a photon
was previously detected in field 1. If the noise level pr is
sufficiently low and if there is only one excitation stored in the
ensembles, then such conditional probability should present a
plateau with p′

0 since it is conditioned to the detection in field 1
no matter how small the probability is for such detection. Only
when p′

0 becomes comparable to pr does such a conditional
probability start to decrease, since the probability of having
no excitation stored in the ensemble as a result of a spurious
detection in the writing process becomes then non-negligible.
This behavior is represented by the dashed-dotted curve in
Fig. 4(c) for np = 1. Once np increases, however, a deviation
from the plateau is also observed for higher p′

0 values since
the higher-order excitations in this region contribute directly
to P

(0)
10 + P

(0)
01 .

The variation of Cn with p′
0 as n increases is finally

presented in Fig. 5, where we considered np = 8 for all curves.
We observe then the degradation of the final entangled state
as the number of swapping operations increases, requiring
purer and purer initial states (smaller p′

0) in order to still
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FIG. 5. (Color online) Concurrence as a function of the probabil-
ity p′

0 to herald the storage of an entangled state for various numbers
n of entanglement swapping stages. We employed here np = 8, and
the other parameters were the same as in Fig. 4.

generate a state with a verifiable amount of entanglement.
As a result, p(n)

max becomes rapidly smaller when n increases.
Such degradation continues until p(n)

max reaches a value on the
order of pr . After that, the concurrence is negative for any p′

0
and no entanglement is measured. For the conditions in Fig. 5,
n = 5 is the maximum number of swapping operations for
which Cn still presents positive values for some p′

0, and we
have p(5)

max = 8 × 10−6.
Such increased degradation comes from both vacuum

contamination of the stored state and the contributions of
higher-order excitations to the heralding events. The vacuum
component, however, is controlled by the built-in purification
mechanism of the DLCZ protocol [1], in which the heralding
by photodetections of the different stages of the protocol helps
to eliminate large portions of such vacuum component from the
subsequent stages. In order to control the contributions from
higher-order excitations, on the other hand, we are required
to decrease considerably p′

0 from one stage of the protocol
to the next since those contributions are enhanced by the
accumulation of detection events in the chain of swapping
operations. One important thing to note is that no increase in
np is required to properly model the succession of swapping
operations. Actually, with the decrease in p(n)

max as n increases,
we observe also a decrease in the minimum np required to
achieve similar precision on the determination of p(n)

max as
the number of swappings increases. In this way, we find a
minimum np = 5 to achieve about 1% difference in p(1)

max with
respect to the same result with np − 1, and a minimum np = 4
for similar precision in p(2)

max. For the overall analysis of the
perspectives for implementation of the DLCZ protocol, Fig. 5
is the main result of this section and we will come back to it
later in our discussion.

2. Violation of CHSH inequality

The observation of a violation of the CHSH inequality
by states like the ones we discussed above requires a quite
different setup (see Fig. 6) [11]. First of all, we need two
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where we considered that the relative phase between the fields
coming from the U and D pairs of ensembles was set up to be
zero [11,25], i.e., αL − αR + θU − θD = 0, with θU (θD) the
phase of state ρ

(n)
LU,RU [ρ(n)

LD,RD] as defined in Eq. (20).
From Eqs. (34), (35), and (42), we then calculate for various

n the Bell parameter Sn as a function of p′
0, the probability

to succeed in the entanglement-generation stage. The results
are presented in Fig. 7, where we plot only the region of
the curves (Sn > 2) for which entanglement is detected. We
observe then a behavior qualitatively similar to the one for the
concurrence, with the existence of a maximum p′

0 (that we call
now q(n)

max) for each swapping stage and a maximum n above
which entanglement is not detected. The main differences
with respect to the concurrence are related to the always
smaller values of the maxima p′

0 and n and to the absence
of the decrease in the entanglement parameter as p′

0 → pr .
The first difference is a consequence, as anticipated above, of
the need to use a copy of the original entangled state, with the
measurement reflecting the combined imperfections of both
pairs. The second difference comes from the fact that the
Bell parameter is not an entanglement measure, such as the
concurrence. It is just an entanglement detector, not directly
proportional to the amount of entanglement of the state.

For the parameters in Fig. 7, we have then n = 4 as the
maximum number of swappings for which entanglement can
still be measured by means of a violation of the CHSH
inequality. As for the concurrence, this limitation comes
directly from the dark count level pr considered in the theory.
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for which entanglement can be verified by the concurrence criterium
after a certain number n of swapping operations. The filled circles
indicate the corresponding maxima according to the criterium of
violation of the CHSH inequality. The lines are just to guide the
eyes. The open diamond in (a) indicates the p(0)

max experimentally
measured in Ref. [46]. The open triangle, circle, and square in
(b) indicate the measured h0 for the experimental conditions of
Refs. [10–12], respectively. The region below the limiting curves
coming from the violation of the CHSH inequality is highlighted
by dotted lines and indicates the region of states that can be used
for quantum cryptography, following the protocol of Ref. [44].
The dashed line in (a) indicates the value of 2pr assumed in the
calculations.

B. Constraints for entanglement distribution

The results of Figs. 5 and 7 can be summarized in Fig. 8(a),
which provides a map for the necessary conditions the system
should attain to result in the observation of entanglement
according to one criterium or the other. This map contains
then the predictions for p(n)

max and q(n)
max, drawing the limits for

the values of p′
0 one can employ and still verify entanglement.

The open diamond indicates the value of p(0)
max measured in

Ref. [46] for which the theory was fit by adjusting η1. We
also highlight the parameter region where violation of the
CHSH inequality is verified since this indicates the region
for states that can be useful for quantum cryptography [44],
one of the main motivations for the implementation of the
DLCZ protocol. The dashed line indicates the value of 2pr ,
the ultimate limit to p(n)

max in the theory, which leads to the limit
in the maximum number of swapping operations allowed for
a particular set of parameters.

062303-10

MILRIAN S. MENDES AND DANIEL FELINTO PHYSICAL REVIEW A 84, 062303 (2011)

10-5 10-4 10-3 10-2
2.0

2.2

2.4

2.6

2.8

'

4
3

2

1

n = 0

S n

p
0

FIG. 7. (Color online) Bell parameter Sn for the state after n

swapping operations as a function of the probability p′
0 to generate

the initial entangled state. The other parameters are the same as for
Fig. 5.

CAD =
np∑

l=0

np−l∑

m=0

np∑

l′=0

np−l′∑

m′=0

np∑

!s=−np

G!s
lm J−!s

l′m′ V −!s,n
mm′ V !s,n

ll′

B2
n

,

(42c)

CBC =
np∑

l=0

np−l∑

m=0

np∑

l′=0

np−l′∑

m′=0

np∑

!s=−np

H!s
lm I−!s

l′m′ V −!s,n
mm′ V !s,n

ll′

B2
n

,

(42d)

where we considered that the relative phase between the fields
coming from the U and D pairs of ensembles was set up to be
zero [11,25], i.e., αL − αR + θU − θD = 0, with θU (θD) the
phase of state ρ

(n)
LU,RU [ρ(n)

LD,RD] as defined in Eq. (20).
From Eqs. (34), (35), and (42), we then calculate for various

n the Bell parameter Sn as a function of p′
0, the probability

to succeed in the entanglement-generation stage. The results
are presented in Fig. 7, where we plot only the region of
the curves (Sn > 2) for which entanglement is detected. We
observe then a behavior qualitatively similar to the one for the
concurrence, with the existence of a maximum p′

0 (that we call
now q(n)

max) for each swapping stage and a maximum n above
which entanglement is not detected. The main differences
with respect to the concurrence are related to the always
smaller values of the maxima p′

0 and n and to the absence
of the decrease in the entanglement parameter as p′

0 → pr .
The first difference is a consequence, as anticipated above, of
the need to use a copy of the original entangled state, with the
measurement reflecting the combined imperfections of both
pairs. The second difference comes from the fact that the
Bell parameter is not an entanglement measure, such as the
concurrence. It is just an entanglement detector, not directly
proportional to the amount of entanglement of the state.

For the parameters in Fig. 7, we have then n = 4 as the
maximum number of swappings for which entanglement can
still be measured by means of a violation of the CHSH
inequality. As for the concurrence, this limitation comes
directly from the dark count level pr considered in the theory.
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calculations.

B. Constraints for entanglement distribution

The results of Figs. 5 and 7 can be summarized in Fig. 8(a),
which provides a map for the necessary conditions the system
should attain to result in the observation of entanglement
according to one criterium or the other. This map contains
then the predictions for p(n)

max and q(n)
max, drawing the limits for

the values of p′
0 one can employ and still verify entanglement.

The open diamond indicates the value of p(0)
max measured in

Ref. [46] for which the theory was fit by adjusting η1. We
also highlight the parameter region where violation of the
CHSH inequality is verified since this indicates the region
for states that can be useful for quantum cryptography [44],
one of the main motivations for the implementation of the
DLCZ protocol. The dashed line indicates the value of 2pr ,
the ultimate limit to p(n)

max in the theory, which leads to the limit
in the maximum number of swapping operations allowed for
a particular set of parameters.
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FIG. 10. (Color online) Average time 〈tn〉 to succeed in the nth
stage of the DLCZ protocol as a function of the square of n, taking into
account the increasing degradation of the stored states with n due to
higher-order components of the field. The squares correspond to the
situation considered in Figs. 5–9, with T = 0.5 µs. For the circles,
we increased the efficiencies by ≈2, to η1 = 0.04 and η2 = 0.25,
respectively. The solid and dashed lines are linear fits (for n ! 1)
indicating that the average time under these conditions scales in the
same way as indicated in the original DLCZ paper [1]. The dotted
and dashed-dotted lines provide the largest reported memory times
for this system, coming from Refs. [30,31], respectively.

consider an increase of about 2 in the overall detection
efficiencies (η1 = 0.04 and η2 = 0.25), corresponding to the
circles in Fig. 10. Such improvement may be challenging to
implement, but should be doable with incremental refinements
in present day technologies, such as some increase in detector’s
efficiency, a decrease of losses in the optical pathway, and
perhaps also increases in mode matching and in the optical
depth of the sample. The circles in Fig. 10, on the other hand,
also provide an idea of the rate of change of the average times
with the efficiencies η1 and η2.

The best results for memory time for the atomic state of the
DLCZ protocol were reported in Refs. [30,31] (1 and 6 ms,
respectively) and are indicated by the dashed-dotted and dotted
lines in Fig. 10. These correspond to a significant improvement
over the coherence time (about 10 µs) in the situation of
Refs. [10–12]. Such improvement in coherence time should
be enough to guarantee a next generation of experiments in
the DLCZ protocol, with n = 1 and maybe n = 2. It was clear
from the first series of experiments on the DLCZ protocol that
crucial imperfections, such as the higher-order components of
the stored excitations, should be included in the original theory
in order to model the experimental results. A new series of
experiments with longer chains will be important to establish
if the extension of the original DLCZ theory presented here is
enough to account for the relevant experimental imperfections
affecting the realization of a chain of entanglement-swapping
operations.

V. CONCLUSIONS

This work provides direct theoretical feedback for the
minimum physical resources required for the success of

the next generation of experiments on the DLCZ protocol,
employing longer chains of atomic ensembles on laboratory
setups. We revisited then the whole analysis of the original
DLCZ protocol, but now considering the main imperfections
of the system detected on the first series of experiments: errors
caused by higher-order excitations of the atomic ensembles.
As the base for our analysis, we calculate the two quantities,
concurrence and the Bell parameter coming from the CHSH
inequality, that were employed so far to verify entanglement
in these first experiments.

In order to properly model the effects of higher-order
excitations of the atomic ensembles, we deduce expressions
for the entangled states distributed over the quantum-repeater
chain, after an arbitrary number of entanglement-swapping
operations, which consider the components up to an arbitrary
number np of excitations stored in the final state. The experi-
mental operations of entanglement generation and distribution
are modeled employing the “ON/OFF” POVM operators
describing avalanche photodetectors in the single counting
regime. We also model in detail the detection processes for
both concurrence and Bell parameter measurements using
such POVM operators. As a result, we are able to study the
dependence of these quantities as np increases, approaching
the ideal theoretical treatment with states that may have
components with any number of excitations. This enables us to
calculate up to an arbitrary precision the threshold conditions
for which entanglement can be verified by one experimental
method or the other. This threshold is parametrized by the
probability p′

0 to entangle the ensembles in a single writing
stage. The smaller this probability is, the closer the first
entangled ensembles are to a pure state with just one excitation
stored in the pair, as long as p′

0 is still much higher than the
dark noise in the detectors. We trace then a map to predict
the region of p′

0 for which entanglement can be verified
by each method. This map is compared to the experimen-
tal conditions employed in the experiments on the DLCZ
protocol done so far, being completely consistent with their
results.

We also deduce a more general expression for the average
time required to distribute entanglement over a chain of
entanglement-swapping operations. This expression is com-
bined with the minimum purity analysis to provide explicit
estimations for the coherence time required to succeed with
high probability in each stage of the protocol. We infer then
that the highest coherence times obtained so far in this system
should be enough to study a chain with just one swapping,
and maybe with two. We analyze then how this average time
scales with the size of the chain, and demonstrate that it
still follows the scaling law predicted by the original DLCZ
theory even when including the requirement of purer and purer
initial states for larger chains. Finally, the dependence of such
average times with the detection efficiencies is illustrated
by providing the same analysis with efficiencies twice as
high.

Even though we concentrate our analysis on the DLCZ
protocol, the theoretical methods introduced in this work could
be applied in principle to any protocol that employs single
excitations obtained from large atomic ensembles. Such a class
of protocols expanded greatly since the DLCZ proposal in
2001. In this way, we hope the present treatment will be useful
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Abstract. The mechanism of extraction of information stored in a quantum
memory is studied here in detail. We consider memories containing a single
excitation of a collective atomic state, which is mapped into a single photon
during the reading process. A theory is developed for the wavepacket of the
extracted photon, leading to a simple analytical expression depending on the key
parameters of the problem, like detuning and the intensity of the read field and
the number of atoms in the atomic ensemble. This theory is then compared to
a large set of experimental situations and a satisfactory quantitative agreement
is obtained. In this way, we are able to systematically study the saturation and
spectrum of the reading process, as well as clarifying the role of superradiance
in the system.
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Figure 1. (a) 3 configuration of levels participating in the photon-pair generation
process, with indication of the transitions connected by write, photon 1, read
and photon 2 fields, respectively, and their respective detunings, 11 and 12,
from the excited state. (b) Timing for the control pulses of fields and detectors
participating in the experiment. (c) General description of the apparatus, see
text for details. PBS stands for polarizing beam splitter, M for mirror, APD for
avalanche photodetector and B for the MOT magnetic field. Half- and quarter-
wave plates are indicated by �/2 and �/4, respectively.

alignment, the write beam may be coupled to the read-beam fiber, and vice versa, with about
70% coupling efficiency. The photons are emitted counterpropagating to each other forming
an angle of about 1� with the direction of the write and read fields. They are also coupled to
optical fibers, single-mode (SM) ones, whose corresponding transverse modes are focused to a
diameter of 200 µm in the ensemble. An alignment laser field coming out of the field 2 fiber may
be coupled with about 55% efficiency to the field 1 fiber. In such configuration, field 2 is detected
in the phase matched mode to field 1, with correspondingly higher probability, since the write
and read fields may be approximated by plane waves due to their larger diameter in the ensemble
region [35]. Phase matching also requires specific combinations of polarizations between the
four fields. We setup then the write and read fields with linear orthogonal polarizations. The
photons 1 and 2 also have linear polarizations, with the one for field 1 being orthogonal to both
the write field and field 2. The polarizations of the various beams are fixed by the combination
of polarizing beam splitters and waveplates shown in figure 1(c).

After the photons are coupled to their respective optical fibers, they pass through SM fiber
beamsplitters and reach two independent pairs of APDs. The output of the APDs are directed

New Journal of Physics 15 (2013) 075030 (http://www.njp.org/)
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Figure 5. Total conditional probability Pc as a function of read-field intensity
Ir for two detunings: 1/(2⇡) = 1.7 MHz (black squares) and 25.7 MHz (red
circles). The solid lines are the corresponding theoretical results obtained from
(40) with the same parameters of figure 2.

Higher intensities are also required to guarantee the transparency of the medium to the extracted
photon, which will be more clearly revealed in section 4.3.

Figure 6 provides the results demonstrating directly the violation of the Cauchy–Schwarz
inequality R = g2

12/(g11g22) < 1 valid for classical fields [36], where gi j (with i, j = 1, 2)
are the various correlation functions defined in section 2 between fields 1 and 2. The
quantities in figure 6 are calculated for the points in figure 5 with 1/(2⇡) = 1.7 MHz.
We also employed here the 160 ns time window of the previous figure. This is crucial to
improve the statistics of the measured quantities. Even though, we still have large statistical
uncertainties for the determination of g22, and also a large susceptibility of both g11 and
g22 for our long term experimental fluctuations. For their determination, these quantities
require measurements of the two-photon components in fields 1 and 2, which are quite
low once we enter well into the single-photon regime, as indicated by g12 ⇡ 9 [35]. This
leads to the large fluctuations and error bars in R. We clearly observe, however, R � 1
for all measured values of Ir, typically a couple of error bars above the threshold value
R = 1.

Figure 6 also presents the saturation behavior of g12, which is quite different from Pc.
The saturated value of g12 ⇡ 9 is reached for considerably smaller intensities, and it presents
a plateau for very low intensities. The plateau value, around g12 ⇡ 5, is considerably larger
than the value g12 = 1 for uncorrelated measurements between fields 1 and 2, indicating the
presence of strong, residual correlations even for very low Pc. The values of g11 and g22 are
roughly constant, as expected. However, g11 presents values systematically larger than the ones
for g22. This is due to a larger contamination of field 2 by poisson-like noise. We do not employ
frequency filters on the pathway of fields 1 and 2, and since the read pulse is considerably larger
than the write pulse, we expect a larger component of spurious laser light into the noise of
field 2.
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Daniel Felinto1,†

1Departamento de Fı́sica, Universidade Federal de Pernambuco, 50670-901 Recife-PE, Brazil
2Departamento de Fı́sica, Universidade Federal de Minas Gerais, 30161-970 Belo Horizonte-MG, Brazil

(Received 14 November 2013; revised manuscript received 14 July 2014; published 26 August 2014)

The interaction of an ensemble of atoms with common vacuum modes may lead to an enhanced emission into
these modes. This phenomenon, known as superradiance, highlights the coherent nature of spontaneous emission,
resulting in macroscopic entangled states in mundane situations. The complexity of the typical observations of
superradiance, however, masks its quantum nature, allowing alternative classical interpretations. Here we stress
how this picture changed with the implementation ten years ago of a new process for single-photon generation
from atomic ensembles. We present then the last piece of evidence for the superradiant nature of such a process,
reporting the observation of an accelerated emission of the photon with a rate that may be tuned by controllably
changing the number of atoms in the ensemble. We hope such an investigation will help open up a new bottom-up
approach to the study of superradiance.

DOI: 10.1103/PhysRevA.90.023848 PACS number(s): 42.50.Nn, 32.80.Qk, 42.50.Ct

I. INTRODUCTION

Sixty years ago, it was pointed out by Dicke that the full
quantum-mechanical treatment of spontaneous emission from
an ensemble of atoms could lead to enhanced “superradiant”
emissions in particular modes [1]. Such an effect would
result in the medium spontaneously radiating in a burst much
more directional and faster than if the atoms were emitting
independently. This strong cooperativity is originated in the
coherent nature of the interaction between atoms and vacuum
and in the fact that some vacuum modes are coupled to the
whole ensemble. Over time, superradiance has attracted great
attention since it may occur in common situations in many
different systems and is the manifestation of a macroscopic
entangled state spontaneously generated in the medium.

Even though, superradiance is still an effect hard to
characterize and isolate. The interaction between particles
and the induction of macroscopic polarizations in the sample,
for example, may destroy or mask the observations of
spontaneous cooperativity [2]. The first observations of strong
superradiance, reported in the 1970s using extended ensembles
[3,4], were mixed with strong propagation and diffraction
effects [2,5]. On top of that, there is the question of the
necessity or not of the full quantum-mechanical treatment and
the entangled states that naturally come with it to understand
the experimental results. It is clear that various aspects
of superradiance have classical analogs [1–3], such as the
enhanced decay in a burst, which can be obtained from an
ensemble of antennas emitting in phase.

However, a new process for generating photon pairs from
atomic ensembles, proposed in 2001 [6] and implemented
two years later [7], significantly moves away from the
semiclassical views of superradiance and reinforces the central
role of macroscopic entanglement for the understanding of the
phenomenon and of its potential applications. This process
was part of a broad protocol for quantum communication

*Present address: Unidade Acadêmica do Cabo de Santo Agostinho,
Universidade Federal Rural de Pernambuco, BR 101 SUL, Km 97,
Cabo de Santo Agostinho-PE, Brazil.
†Corresponding author: dfelinto@df.ufpe.br

over long distances, known as the Duan-Lukin-Cirac-Zoller
(DLCZ) protocol. In the following, we highlight the impact
the experimental implementation of the DLCZ protocol had
on the study of superradiance and report an investigation on the
dynamics of such a photon-pair generation that directly reveals
its superradiant character. Our measurements of acceleration
in the radiation process complement the known collective
enhancement in directionality in the system. In this way, all key
aspects of the phenomenology of superradiance have now been
identified in connection to the DLCZ photon-pair-generation
process, which can be employed henceforth as a framework
for the systematic study of superradiance itself.

Below, in Sec. II we discuss the role of superradiance in
the DLCZ protocol as we introduce the basic process behind
single-photon generation in our system. Section III presents
our experimental setup, its characterization, and our first
results related to superradiance. In this section, we measure the
threshold optical depth of the atomic ensemble for superradiant
behavior as revealed by a sharp growth of the probability to
detect the emitted single photon in the correct mode, combined
with the appearance of nonclassical correlations in the system.
We also demonstrate that such detection probability grows
at threshold with the square of the number of atoms in
the ensemble. Section IV focuses on our observations of
Rabi oscillations for the collective atomic mode and their
comparison to an analytical theory for the reading process. This
comparison is the basis to extract the decay time of the excited
state modified by the condition of superradiance. In Sec. V
we demonstrate experimentally, then, that such decay time is
decreased as the number of atoms in the ensemble grows in the
way expected for a superradiant process. Section VI provides
finally our conclusions and perspectives on the subject.

II. SUPERRADIANCE IN THE DLCZ PROTOCOL

In order to understand its classical analogy, one may view
superradiance as a cascade of emissions starting at a state of
maximum energy of an ensemble of two-level atoms [1,2],
see Fig. 1(a). Labeling |g〉 and |e〉 the ground and excited
states, respectively, the initial state |e,e,e · · · e〉 of the ensemble
then would carry no coherence between the atoms. Once a
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FIG. 1. (Color online) (a) Typical superradiant cascade in an
ensemble of atoms with two levels |g〉 and |e〉. S{| · · · 〉} indicates
symmetrical entangled states generated along the cascade. (b)
Minimal superradiant cascade of the DLCZ protocol, involving atoms
with three levels: |g〉, |s〉, and |e〉. Spontaneous emissions on fields
1 and 2 are observed after excitation of the ensemble by write and
read pulses, respectively. (c) Spatial configuration for fields in (b).
Write and read are large beams counterpropagating to each other.
Fields 1 and 2 are defined by the optical fibers (in blue) carrying them
to detectors D1 and D2. The detected modes, forming a small angle
with the excitation fields, define the region in the atomic cloud that
stores the collective entangled state. PF and FF denote polarization
and frequency filters, respectively.

first atom spontaneously decays and emits a photon in the
common mode, the system is left in a large symmetrical
collective state S{|g,e,e · · · e〉} ∝

∑
i |e,e · · · gi · · · e,e〉 for

which an atom i decayed, but it is not known which one.
This large entangled state has a fixed phase between its
parts and some coherence, coming from the small probability
each atom has of being in the ground state. As the cascade
proceeds down the energy ladder, new symmetrical states are
formed with more and more atoms in |g〉. The amount of
coherence then grows in the sample. After many emissions,
the system’s behavior is dominated by its large coherence
and hereafter may be approximated by its classical analog.
In the end, the ensemble is left in state |g,g,g · · · g〉 with
again no coherence. In the picture presented above, which has
been quite successful for explaining experimental observations
[2,3], the full quantum-mechanical treatment is only required
to describe the spontaneous trigger for an otherwise classical
decay process.

As for the DLCZ protocol, its building block is the
generation of macroscopic entangled states that can be stored
over long times. In order to do so, three-level atoms in
the ! configuration are employed [Fig. 1(b)] with an extra
ground state |s〉 added to the above picture. All atoms are
initially prepared in |g〉. The sample is then excited by a laser
pulse (write) detuned from the transition |g〉 → |e〉 and, with
small probability, a photon may be spontaneously emitted in
the transition |e〉 → |s〉 with an atom being simultaneously
transferred to |s〉. If the photon is emitted in a mode
(field 1) common to the ensemble, its detection heralds the
preparation of the symmetrical entangled state S{|s,g,g · · · g〉}
[6]. A second laser pulse (read) may now excite the transi-

tion |s〉 → |e〉 and, with high probability, a second photon
(field 2) is emitted in the transition |e〉 → |g〉. In the end, all
atoms are left again in |g〉. This last part of the process is the
one connected to the usual phenomenology of superradiance,
the high probability for the second emission coming from its
strong directionality [6]. Different from previous experiments
in superradiance, however, a strong read pulse may “open”
the medium to the outgoing photon, using the effect known as
electromagnetically induced transparency (EIT) [8], reducing
considerably distortions due to propagation of the photon
through a thick extended sample.

After the first implementations of this process [7,9,10],
a major development was the introduction in 2005 of a
four-wave-mixing configuration [Fig. 1(c)] for the photon pair
generation [11,12], which solved most complications related
to diffraction in the superradiant emission. The write pulse
has here a considerably larger waist for its transversal mode
than the one for field 1, which is fiber coupled and detected
with a small angle to the direction of the write beam. In this
case, the stored state with a single excitation in the ensemble
would be given by |1at 〉 =

∑
i Ai |g,g · · · si · · · g〉, where Ai

gives the probability amplitude that the ith atom contributed
to the detected mode [13]. In this way, the optical fiber for
field 1 defines the spatial shape of the collective state stored
in the ensemble. If the read field also has a large waist
and is counterpropagating to the write beam, then field 2 is
generated in the conjugated mode to field 1 [13]. The result is
a superradiant emission of photon 2 in a well-defined single
mode, which can be coupled to an optical fiber with high
efficiency [14]. An indirect observation of the superradiant
increase in the spontaneous decay rate of the system was also
reported in Ref. [13] as part of a detailed study of the saturation
and spectrum of the readout process of field 2 under conditions
of strong decoherence due to inhomogeneous magnetic fields
acting on the atomic ensemble.

The overall process described above amounts then to a min-
imal superradiant cascade [Fig. 1(b)] in which a single photon
is responsible for the preparation of the initial macroscopic
entangled state that later results in the superradiant emission
of another single photon. The fundamental importance of a
minimal single-photon superradiance has been emphasized
in recent years in a number of papers [15–17], and other
experiments at the single-excitation level have been reported
in studies of nuclear scattering of synchrotron radiation [18]
and of two-photon cascade transitions in cold atoms [19].
The essential quantum-mechanical nature of the effect, in this
case, can be directly apprehended from the interplay between
its wavelike (collective interference) and particlelike (single-
photon detection) aspects. The DLCZ protocol, however, adds
to this picture the possibility to generate complex entangled
states between different atomic ensembles [20–23] and even
to explore these states for practical applications [6].

III. NONLINEAR ENHANCEMENT AND THRESHOLD

In our experimental setup, the atomic ensemble is a cloud
of cold cesium atoms obtained from a magneto-optical trap
with the trap laser tuned 15 MHz below the 6S1/2(F = 4) →
6P3/2(F ′ = 5) transition and the repumper laser resonant
with the 6S1/2(F = 3) → 6P3/2(F ′ = 4) transition. Levels
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of the proper collective state. From this definition, we have
then Pc =

∫ ∞
0 pc(t)dt . The unconditional wave packets of

photon 2 are obtained from p2(t), the probability to detect
an event in field 2 in a time window !t around t . The time
dependence of the correlations between fields 1 and 2 is given
by g12(t) = pc(t)/p2(t) = p12(t)/[p2(t)P1] with g12(t) > 2
again indicating nonclassical correlations [24].

The wave packets of photon 2 for Dopt ≈ 4.8, !t = 1 ns,
and various read powers are plotted in Fig. 6 (open circles). In
order to decrease the number of free parameters in comparisons
to the theory, we normalized pc(t) by Pc for each curve. The
time dependence for the correlations between fields 1 and 2 can
be evaluated (similarly as for Fig. 3) by the ratio of the open
circles to the dashed blue curves in Fig. 6 [24]. For these results
on the field-2 wave packets, we introduced some modifications
to the timing scheme of Fig. 2. The period in which the trials
were taken was reduced from 1 to 0.5 ms to improve the
uniformity of Dopt throughout the magnetic-field-off period
(see subsection below). The trial period was reduced from
5 to 1 µs to increase the experiment’s repetition rate. Finally,
the read pulse duration was increased from 180 to 840 ns to
guarantee the depletion of the |s〉 level even for the lowest read
powers employed in the measurements.

The theoretical expression for the wave packet (solid
red curves) can be directly obtained from Ref. [13] for a
resonant read field in the limit of high intensity and negligible
decoherence rate between the ground states,

pc(t)
Pc

= χ#$2!t e−χ#t/2

(
$2 − χ2#2

4

) sin2
(√

$2 − χ2#2

4
t

2

)
, (1)

with # = 5.2 MHz as the natural decay rate of the excited state,
$ as the Rabi frequency for the transition |s〉 → |e〉 excited
by the read laser, and χ as a “cooperativity parameter” leading
to the enhanced decay rates characteristic of superradiance. In

(a) (b)

(c) (d)

(e) (f)

FIG. 6. (Color online) Open circles provide the normalized con-
ditional probability as a function of time for six different read powers
(in milliwatts): (a) 2.1, (b) 1.2, (c) 0.6, (d) 0.3, (e) 0.15, and (f) 0.075.
Solid red curves are the theoretical results of Eq. (1) with χ = 3.8
and α = 9.0. Dashed blue lines provide the corresponding results for
the normalized unconditional probability p2(t)/Pc.

Ref. [13], it was also shown that, for our experimental situation,

χ = 1 + N

w2
0k

2
2

, (2)

with w0 as the waist of the photonic transversal mode, k2 as the
modulus of its wave vector, and N as the number of atoms that
interact with this mode. Since both |s〉 and |e〉 have Zeeman
sublevels, $ represents only an effective Rabi frequency. As
$2 is proportional to the intensity of the read beam, one may
write $ = α

√
P# with P as the read power and α as a fit

parameter. In this way, we are left with just two fit parameters
for all curves α and χ .

The observed behavior in Fig. 6 for the highest powers
can be described then as a damped forced oscillation with
a straightforward physical interpretation from Eq. (1) [13].
The read beam induces transitions between levels |s〉 and
|e〉, forcing the system to perform Rabi oscillations between
these levels. The frequency of these oscillations is determined
mainly by the strength of the read field, represented by $,
but also depends on χ#. When an atom is in |e〉, it may
spontaneously decay to |g〉 emitting a photon. The spontaneous
emission rate is increased due to constructive interference
from the emission of different atoms with such an increase
represented by the parameter χ . A direct consequence of the
superradiant nature of the emission is then the observation of
χ > 1. For comparison, the natural decay time of independent
atoms for the coherence between excited and ground states
is (#/2)−1 ≈ 60 ns, whereas Fig. 6 shows a decay time of
(χ#/2)−1 ≈ 16 ns. We observe a better agreement between
theory and experiment for higher powers since the theory in
Ref. [13] was deduced assuming transparency of the sample
to the outgoing photon due to EIT. As power is reduced, the
medium becomes more opaque to the photon, and propagation
effects related to its reabsorption cannot be neglected [13,25].

Dopt uniformity

In order to check for the uniformity of Dopt throughout the
whole interval when the magnetic field is off, we developed
a different method to measure Dopt in a situation that is the
closest possible to our actual experiment. It consisted of tuning
the write field to resonance, considerably decreasing its power,
and checking at each trial for the pulse shape after the cell with
and without an atomic cloud. The distorted pulse shape was
then compared to the theoretical result for the propagation of
an optical pulse of similar duration through an ensemble of
two-level atoms with the same linewidth of the excited state
in our experiment. Dopt was then obtained from the fit of
the theory to the experimental results. An example of such a
measurement is shown in Fig. 7 for the timing employed in the
measurements of Fig. 6. Figure 7 shows then the measurement
of Dopt throughout the complete 0.5-ms interval in which the
trials occur each time the magneto-optical trap is turned off.
Each point in the graph is an average for the fit performed in
four trials. In this way, we clearly observe no trend for change
in the average value of Dopt during the period the trap is off and
the measurements are performed. The average Dopt over the
whole 0.5-ms interval measured this way Dopt = 4.29 ± 0.01
was also consistent with the Dopt obtained from our standard
method under the same conditions.
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an event in field 2 in a time window !t around t . The time
dependence of the correlations between fields 1 and 2 is given
by g12(t) = pc(t)/p2(t) = p12(t)/[p2(t)P1] with g12(t) > 2
again indicating nonclassical correlations [24].

The wave packets of photon 2 for Dopt ≈ 4.8, !t = 1 ns,
and various read powers are plotted in Fig. 6 (open circles). In
order to decrease the number of free parameters in comparisons
to the theory, we normalized pc(t) by Pc for each curve. The
time dependence for the correlations between fields 1 and 2 can
be evaluated (similarly as for Fig. 3) by the ratio of the open
circles to the dashed blue curves in Fig. 6 [24]. For these results
on the field-2 wave packets, we introduced some modifications
to the timing scheme of Fig. 2. The period in which the trials
were taken was reduced from 1 to 0.5 ms to improve the
uniformity of Dopt throughout the magnetic-field-off period
(see subsection below). The trial period was reduced from
5 to 1 µs to increase the experiment’s repetition rate. Finally,
the read pulse duration was increased from 180 to 840 ns to
guarantee the depletion of the |s〉 level even for the lowest read
powers employed in the measurements.

The theoretical expression for the wave packet (solid
red curves) can be directly obtained from Ref. [13] for a
resonant read field in the limit of high intensity and negligible
decoherence rate between the ground states,
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with # = 5.2 MHz as the natural decay rate of the excited state,
$ as the Rabi frequency for the transition |s〉 → |e〉 excited
by the read laser, and χ as a “cooperativity parameter” leading
to the enhanced decay rates characteristic of superradiance. In
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FIG. 6. (Color online) Open circles provide the normalized con-
ditional probability as a function of time for six different read powers
(in milliwatts): (a) 2.1, (b) 1.2, (c) 0.6, (d) 0.3, (e) 0.15, and (f) 0.075.
Solid red curves are the theoretical results of Eq. (1) with χ = 3.8
and α = 9.0. Dashed blue lines provide the corresponding results for
the normalized unconditional probability p2(t)/Pc.
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with w0 as the waist of the photonic transversal mode, k2 as the
modulus of its wave vector, and N as the number of atoms that
interact with this mode. Since both |s〉 and |e〉 have Zeeman
sublevels, $ represents only an effective Rabi frequency. As
$2 is proportional to the intensity of the read beam, one may
write $ = α

√
P# with P as the read power and α as a fit

parameter. In this way, we are left with just two fit parameters
for all curves α and χ .

The observed behavior in Fig. 6 for the highest powers
can be described then as a damped forced oscillation with
a straightforward physical interpretation from Eq. (1) [13].
The read beam induces transitions between levels |s〉 and
|e〉, forcing the system to perform Rabi oscillations between
these levels. The frequency of these oscillations is determined
mainly by the strength of the read field, represented by $,
but also depends on χ#. When an atom is in |e〉, it may
spontaneously decay to |g〉 emitting a photon. The spontaneous
emission rate is increased due to constructive interference
from the emission of different atoms with such an increase
represented by the parameter χ . A direct consequence of the
superradiant nature of the emission is then the observation of
χ > 1. For comparison, the natural decay time of independent
atoms for the coherence between excited and ground states
is (#/2)−1 ≈ 60 ns, whereas Fig. 6 shows a decay time of
(χ#/2)−1 ≈ 16 ns. We observe a better agreement between
theory and experiment for higher powers since the theory in
Ref. [13] was deduced assuming transparency of the sample
to the outgoing photon due to EIT. As power is reduced, the
medium becomes more opaque to the photon, and propagation
effects related to its reabsorption cannot be neglected [13,25].

Dopt uniformity

In order to check for the uniformity of Dopt throughout the
whole interval when the magnetic field is off, we developed
a different method to measure Dopt in a situation that is the
closest possible to our actual experiment. It consisted of tuning
the write field to resonance, considerably decreasing its power,
and checking at each trial for the pulse shape after the cell with
and without an atomic cloud. The distorted pulse shape was
then compared to the theoretical result for the propagation of
an optical pulse of similar duration through an ensemble of
two-level atoms with the same linewidth of the excited state
in our experiment. Dopt was then obtained from the fit of
the theory to the experimental results. An example of such a
measurement is shown in Fig. 7 for the timing employed in the
measurements of Fig. 6. Figure 7 shows then the measurement
of Dopt throughout the complete 0.5-ms interval in which the
trials occur each time the magneto-optical trap is turned off.
Each point in the graph is an average for the fit performed in
four trials. In this way, we clearly observe no trend for change
in the average value of Dopt during the period the trap is off and
the measurements are performed. The average Dopt over the
whole 0.5-ms interval measured this way Dopt = 4.29 ± 0.01
was also consistent with the Dopt obtained from our standard
method under the same conditions.
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FIG. 7. (Color online) Measurement of optical depth for the
outgoing photon throughout the whole 0.5-ms interval at which trials
are taken with the trap off.

V. VARIATION IN DECAY TIME WITH OPTICAL DEPTH

Different from the case of independent atoms, the decay
rate in superradiance may vary by tuning the number of atoms
in the ensemble as expected from Eq. (2). Our results for the
wave packet of photon 2 as Dopt is tuned are plotted in Fig. 8.
The symbols and colors in this figure are the same as for Fig. 6.
The read power is around 0.3 mW. The theoretical plots were
obtained from independent fittings of the experimental data to
Eq. (1) using χ and α as fitting parameters. The values of χ
and α obtained for each Dopt are plotted in Fig. 9. Since Dopt
is proportional to N , following Eq. (2) we finally fit the data
for χ versus Dopt with the curve χ = 1 + βDopt, obtaining
β = 0.53 ± 0.02 (see subsection below). We can see that the
increase in the spontaneous decay rate of the atomic ensemble

(a) (b)

(c) (d)

(e) (f)

FIG. 8. (Color online) Open circles provide the normalized con-
ditional probability as a function of time for six different optical
depths: (a) 4.8, (b) 4.0, (c) 3.4, (d) 2.6, (e) 1.6, and (f) 1.0. Solid
red curves are the theoretical results for independent fits using
Eq. (1). The fit parameters χ and α for each Dopt are plotted in
Fig. 9. Dashed blue lines provide the corresponding results for the
normalized unconditional probability p2(t)/Pc. The read power is
0.3 mW.

d
FIG. 9. (Color online) Values of χ and α as a function of Dopt

obtained from the fittings in Fig. 8. The red curve is a fit to a function
with the same linear dependence as Eq. (2). The inset plots the decay
times τsp = (χ%/2)−1.

is proportional to its number of atoms, characterizing the
superradiant nature of the observed single-photon emission.
In Fig. 8 we were able to change the decay time from a
minimum of 18.6 ± 0.8 ns in panel (a) to about 38 ± 3 ns in
(f) (see inset in Fig. 9). As the number of atoms becomes too
low, however, the visibility of the Rabi oscillations degrades
due to the increase in the noise floor given by p2(t) (dashed
blue lines). This is expected from the behavior of Pc as Dopt
decreases (Fig. 3) since it eventually reaches the noise floor
given by P2 once the collective enhancement is lost.

β parameter

The optical depth can be written as Dopt = α0l with α0
as the optical density of the sample and l as its length. On
the other hand, we have α0 = σ0N/V , where σ0 is the on-
resonance scattering cross section of the atom and V is the
sample’s volume. In this way, we have Dopt = Nσ0/πw2

0 with
w0 as the waist of the photonic Gaussian mode defining the
ensemble’s volume. The interpretation for this expression is
straightforward since each atom will scatter a portion σ0/πw2

0
of the incident beam resulting in the total thickness of the
sample when the contributions of all atoms are combined.

The value β = 0.53 ± 0.02 was obtained from a fit of the
function χ = 1 + βDopt to the experimental data. From the
above relation between Dopt and N and from Eq. (2), we
obtain then

β = π

σ0k
2
2

. (3)

The value of σ0 can be obtained from σ0 = !ω%/2Isat, with
ω as the optical frequency of the transition and Isat as its
saturation intensity [26]. From this simple analysis, β would
be given by various well-known parameters (k2,ω,w0,%) plus
the saturation intensity Isat, which will be given as an average
over various transitions through different Zeeman sublevels.
However, the observed value of β would imply a saturation
intensity of Isat ≈ 3.5 mW/cm2, a reasonable value for this
specific transition of cesium [26].
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FIG. 2. (Color online) Timing for the first series of measurements
on the threshold for superradiance.

|g〉, |s〉, and |e〉 are given by the hyperfine states |6S1/2(F =
4)〉, |6S1/2(F = 3)〉, and |6P3/2(F ′ = 4)〉, respectively. The
trap laser is kept on for 20 ms and, together with the trap’s
quadrupolar magnetic field, turned off for 2 ms, see Fig. 2.
During this 2-ms period, the repumper laser is kept on for an
extra 0.5 ms in order to help prepare the atomic ensemble with
all atoms initially at |g〉. The avalanche photodetectors (APDs)
for the photons are then turned on for 1 ms in the last portion
of the 2-ms interval. They have 45% detection efficiency for
photons around 850 nm.

During the time the APDs are on, a sequence of write and
read pulses with durations of 50 and 180 ns, respectively, is sent
every 5 µs to excite the ensemble (Fig. 2). The exciting pulses
are cut from cw diode lasers using acousto-optic modulators
with ≈20-ns rise time. The read pulse arrives in the ensemble
50 ns after the end of the write pulse. The write field was weak
and was detuned 35 MHz below resonance to avoid absorption
in order to guarantee a uniform excitation of the ensemble.
The read pulse was strong and was tuned to resonance. In this
way, it performed a double role, completely reading out the
stored excitation and optically pumping the atoms back to |g〉.
We employ the geometrical configuration of Fig. 1(c) with
400 and 200 µm for the diameters of the transversal modes
of write and read and field 1 and field 2, respectively, and
a 2◦ angle between them. The ensemble is about 3-mm long.
Write and read fields have linear polarizations opposite to each
other and to the respective photons they generate. Polarization
filters were placed then in front of the fibers for fields 1 and
2 [Fig. 1(c)] to separate the photons from their respective
excitation pulses. For field 1, a frequency filter is employed to
eliminate photons from spontaneous decays in the transition
|e〉 → |g〉. This filter consists of an in-fiber Fabry-Pérot with
a free spectral range of 20 GHz and a linewidth of 400 MHz
(FWHM).

In order to characterize the single-photon regime of field 2,
both detectors in Fig. 1(c) were substituted by pairs of detectors
connected to the output of fiber beam splitters [13]. In this
way, we are able to measure the integrated quantities Pi and

Optical depth

Optical depth

FIG. 3. (Color online) Squares provide the total conditional
probability Pc for extracting the second photon, once the first was
detected, as a function of the ensemble’s optical depth. The dashed
blue line connects the respective results for P2, the unconditional
probability to detect a photon in field 2. The employed read pulse was
180-ns long. The inset provides a log-log graph for !Pc = Pc − P2

versus Dopt. The red line is a linear fit of slope s = 1.9 ± 0.3 such
that !Pc ∝ Ds

opt.

Pij giving the probability of having single detections in field i
and the probability of having joint detections in fields i and j ,
respectively. The total probability of having a detection in field
2 conditioned to one in field 1 is then given by Pc = P12/P1.
A direct observation of the onset of collective enhancement
in the system as the number of atoms N increases is plotted
in Fig. 3, through the dependence of Pc (squares) with the
sample’s optical depth (Dopt) in the transition |g〉 → |e〉, which
is proportional to N .

The optical depth was determined as in Ref. [13] and was
changed by tuning the power of the trap laser. Our standard
way to measure the optical depth of the atomic ensemble, then,
was to send through it a weak long pulse (about 0.5-µs long)
resonant to the |g〉 → |e〉 transition. Comparing the signal for
the center of the pulse after the cell with (Vf ) and without
(Vi) the atomic cloud on the pathway, we could calculate
directly the optical depth of the cloud through the expression
Dopt = − ln(Vf /Vi). We obtained the same results for Dopt if
we tuned the pulse over the resonance and fitted the results with
a Lorentzian profile. The measurement of Dopt was performed
typically in the center of the interval the APDs were on (see
Fig. 2) without write or read fields acting on the ensemble.

The single-photon character of field 2 was demonstrated by
measuring a significant decrease in the quantity Pcc = P122/P1
with respect to what is expected for coherent fields. P122 is
the probability for a triple joint detection with two detections
in field 2 following one in field 1. In this way, Pcc is the
conditional probability of having two detections in field 2
after one in field 1. Operationally, the single-photon character
results in gc

2 = Pcc/P
2
c < 1 with gc

2 as the second-order
autocorrelation function for the conditioned field 2. For the
largest Dopt’s in Fig. 3, we obtain gc

2 = 0.23 ± 0.06. The
single-photon character may also be indicated by an indirect
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FIG. 7. (Color online) Measurement of optical depth for the
outgoing photon throughout the whole 0.5-ms interval at which trials
are taken with the trap off.

V. VARIATION IN DECAY TIME WITH OPTICAL DEPTH

Different from the case of independent atoms, the decay
rate in superradiance may vary by tuning the number of atoms
in the ensemble as expected from Eq. (2). Our results for the
wave packet of photon 2 as Dopt is tuned are plotted in Fig. 8.
The symbols and colors in this figure are the same as for Fig. 6.
The read power is around 0.3 mW. The theoretical plots were
obtained from independent fittings of the experimental data to
Eq. (1) using χ and α as fitting parameters. The values of χ
and α obtained for each Dopt are plotted in Fig. 9. Since Dopt
is proportional to N , following Eq. (2) we finally fit the data
for χ versus Dopt with the curve χ = 1 + βDopt, obtaining
β = 0.53 ± 0.02 (see subsection below). We can see that the
increase in the spontaneous decay rate of the atomic ensemble
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FIG. 8. (Color online) Open circles provide the normalized con-
ditional probability as a function of time for six different optical
depths: (a) 4.8, (b) 4.0, (c) 3.4, (d) 2.6, (e) 1.6, and (f) 1.0. Solid
red curves are the theoretical results for independent fits using
Eq. (1). The fit parameters χ and α for each Dopt are plotted in
Fig. 9. Dashed blue lines provide the corresponding results for the
normalized unconditional probability p2(t)/Pc. The read power is
0.3 mW.

d
FIG. 9. (Color online) Values of χ and α as a function of Dopt

obtained from the fittings in Fig. 8. The red curve is a fit to a function
with the same linear dependence as Eq. (2). The inset plots the decay
times τsp = (χ%/2)−1.

is proportional to its number of atoms, characterizing the
superradiant nature of the observed single-photon emission.
In Fig. 8 we were able to change the decay time from a
minimum of 18.6 ± 0.8 ns in panel (a) to about 38 ± 3 ns in
(f) (see inset in Fig. 9). As the number of atoms becomes too
low, however, the visibility of the Rabi oscillations degrades
due to the increase in the noise floor given by p2(t) (dashed
blue lines). This is expected from the behavior of Pc as Dopt
decreases (Fig. 3) since it eventually reaches the noise floor
given by P2 once the collective enhancement is lost.

β parameter

The optical depth can be written as Dopt = α0l with α0
as the optical density of the sample and l as its length. On
the other hand, we have α0 = σ0N/V , where σ0 is the on-
resonance scattering cross section of the atom and V is the
sample’s volume. In this way, we have Dopt = Nσ0/πw2

0 with
w0 as the waist of the photonic Gaussian mode defining the
ensemble’s volume. The interpretation for this expression is
straightforward since each atom will scatter a portion σ0/πw2

0
of the incident beam resulting in the total thickness of the
sample when the contributions of all atoms are combined.

The value β = 0.53 ± 0.02 was obtained from a fit of the
function χ = 1 + βDopt to the experimental data. From the
above relation between Dopt and N and from Eq. (2), we
obtain then

β = π

σ0k
2
2

. (3)

The value of σ0 can be obtained from σ0 = !ω%/2Isat, with
ω as the optical frequency of the transition and Isat as its
saturation intensity [26]. From this simple analysis, β would
be given by various well-known parameters (k2,ω,w0,%) plus
the saturation intensity Isat, which will be given as an average
over various transitions through different Zeeman sublevels.
However, the observed value of β would imply a saturation
intensity of Isat ≈ 3.5 mW/cm2, a reasonable value for this
specific transition of cesium [26].
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