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Quantum gases

Quantum gases benefit from a high degree of control of their external and internal
degrees of freedom:

control of the temperature 1 nK — 1 uK
interaction strength: scattering length a
confinement geometry

periodic potentials (optical lattices)

low dimensional systems (1D, 2D)

several internal states, bosons or fermions

® 6 6 6 o o o

easy optical detection

= an ideal system for the study of superfluid dynamics in 2D.
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Outline of the course

@ Lecture 1: Bose-Einstein condensation, interactions and superfluidity
@ Lecture 2: Two-dimensional Bose gases (static)

@ Lecture 3: Rotating two-dimensional Bose gases
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Outline of the lecture

@ BEC in non interacting Bose gases
@ Interacting Bose gases: GPE

© Hydrodynamics of Bose gases
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BEC

Bosons at low temperature: Bose-Einstein condensation

Bose-Einstein condensation: saturation of the number of particles in excited states N’
and macroscopic accumulation Ng ~ N of particles in the ground state for T < T(N)

or N > N(T)
— - - A mechanism linked to
- s . Bose-Einstein statistics:
. 1

a— — — fE) = e
— - S eBE—1) 1
— e “eessee with 3 =1/kgT

—._._
T> T, T < T,

T~ T,

No < N No ~ N l_—_gi—
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BEC

A mechanism linked to the Bose statistics

Assume single-particle Hamiltonian with non degenerate ground state, energy Ej.

1
=y = ke

o f > 0 = chemical potential u < E; for all i = pu < Eg
= f(E) < 1/[eP(Ei~B) 1]

@ Saturation of the number of particles in excited states N':

1 1
N F(Ei) eB(Ei—p) — 1 < Moo (T) eB(Ei—E) _ 1

@ Bose-Einstein distribution: occupation number f(E;)

i#0 i#0 i#0
e BEC occurs if N ,.(T) is finite: No =N — N> N — N/ . (T) macroscopic
e Critical atom number N > N(T) ~ N! .. (T) or temperature T.(N) defined by
N(Te)=N
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BEC

Does Bose-Einstein condensation occur?

Semi-classical description if level spacing < kg T: use the density of states p(¢)

The convergence of the sum on N/ depends on the behavior of p(¢):

00 1 ) e—ﬁs
NC(T):/EO P(g)eﬁ(a_,:—o)_ldEZ/o P(E)mdf

Integral converges near ¢ — oo if p(g) doesn't increase exponentially

Near € — 0, integrand ~ p(g)/(Be) = converges if p(c) — 0.
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BEC

Does Bose-Einstein condensation occur?

@ An important particular case: power law density of state
p(e) o (e — €9)9 with £ > g9 = converges for g > 0.

o] 0o o0
_ 1
Ne(T) o) /O e9e"de o« (kg T)TTHD nq+1:(kBT)q+1gq+1(1)
n=1 n=1

@ Fraction of condensed particles:
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BEC

Bose-Einstein condensation in a 3D box

DOS in a box in dimension D: p(E) o< EP/?271 = only D = 3!

In a 3D box BEC for n\3 > 2.6 with A7 = ——e: N oc T3/

7
8 thermal atoms
5
3
2 condensed atoms

=] ;o

o " i !

j i 0 >
0..,-"'/\“‘-\ — \‘*—. L At 3 : . 2 total atom number (10%)
measure No/N, 3D box potential Saturation of thermal particles
39K, tunable interactions Hadzibabic's group, 2013 LPL

PRL 110, 200406 (2013) e
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BEC

Interpretation of critical temperature

Degeneracy criterion: more than one particle per quantum state.
Size of a state: A\t = TormiaT thermal de Broglie wavelength

. .. T<T.

T>T,
¢ T~T, AT >d
AT < d a single wavefunction for
At ~d all particles
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BEC

Bose-Einstein condensation in a harmonic trap

@ In a harmonic trap wp in dimension D, p(E) oc EP~1
= power law with k=D —1
@ BEC occurs for D > 1i.e. D=2 or D = 3 [Bagnato 1987]

3D harmonic trap: —
kg Te = huwoNY/3 > huwg N, ;
v No | (l) i
N Te
S m
Cornell & Wieman Ensher et al. PRL 77, 4984 (1996) LPL

Anderson et al., Science 269, 198 (1995) s
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BEC

Bose-Einstein condensation in a harmonic trap

@ Shift in condensation temperature? T, lower than expected.
@ Do the population in excited states saturate?

. N’ doesn't saturate!
3D harmonic trap:

L
300 R L
N B
S

Saturated gas
- — N o 200+ J
— N’
D ——

condensation in momentum AND in space

o

N’, N, (thousands)

1004

Tammuz et al., PRL 106, 230401 (2011) o a0 0

N, (thousands)

= interactions play a role and prevent the density to further increase in the trap center
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Role of interactions

Problem: how much do interactions modify this picture of accumulation in a
single-particle state? H = ZlNzl hé') + i V(i — 1)
Test: interferences between condensates

Absorplion PR

CEe

Andrews et al., Science 275, 637 (1997)

@ the coherence length is the cloud size

@ weak interactions (dilute gas)

@ a mean field description is appropriate Bloch et al., Nature 403, 166 (2000)
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Role of interactions

How to find the ground state of H = 3" | h + 2o V(i —1)?

@ assume weak interactions (dilute gas)

@ mean field description: assume the same wavefunction 1 (r) for all atoms i.e.
W) = [¢)1 @ - @ |[¢)n, (r) to be found
@ minimize the energy functional (W|H|V) to find v
e this yields the Gross-Pitaevskii equation (GPE) for v
Ve
(— G+ Ve () +g [0 ) = o
—— ——
Ekin Epot Eint
g = 4”—{22"” interaction coupling constant, we assume here g > 0
a scattering length
1t chemical potential = cost to add a particle LPL
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Solution of GPE in a box

Consider a box potential of size L: Ve (r) = 0 + hard wall b.c.
RV
=

2m

@ vanishing interactions (Schrodinger): —

Y (x) ~ sin (mx/L) ground state of h(®)
= density o sin? (7x/L)
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Solution of GPE in a box

Consider a box potential of size L: Vexi(r) =0 + hard wall b.c.
@ increasing interactions: e v ¢ +g [Py = wp

Ny density flattens
----- healing length to recover from the edge

————————————————————————————————————————— Estimation of healing length:

N/L h2

& 2mez S H
h
= =
‘ § 2mu

-15 -10 -5 0 5 10 15
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Solution of GPE in a box

Consider a box potential of size L: Vex(r) =0 + hard wall b.c.

o large interactions: g |t|?1) ~ ) = ng = /g ~ N/L nearly uniform gas
except at the edges within the healing length

Mo Close to the edge:
N/L X
P(x) ~ y/ng tanh (M)
§ h
&= 2myu
-15 10 —‘5 0 5
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GPE

Solution of GPE in a harmonic trap

Consider now a harmonic potential Ve (r) = 2 mw3r?.

o weak interactions: Gaussian ground state of h(®) with size ag
h2 2
- 2Vm¢ + Vext(r)w = Mw

\ /
\ /
\ /

\ /
\ ~ /
\ / '\ ’
\ / /
\ /
\, /
N /7
\ ’
\ \ /
\ \ /
N, m——— \ /7
\ yAs ~\ /
\ R S ’
\ 2/ ) /
\ Ry \ s
N7 \ N
4
A/ v A
S \ 2 N
’ Y 4
A Y
4 ~ 2N\ \
/ ~ ’ N\ Y
ay o .’ \
/
. e, L TSt 1= .
-3 -2 -1 0 1 2 3
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GPE

Solution of GPE in a harmonic trap

Consider now a harmonic potential Ve (r) = 2 mw3r?.

° incgea2se interactions: deformed Gaussian state with size > ag
h*V
—EX S Vea(n)Y + g [P0 =
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GPE

Solution of GPE in a harmonic trap

Consider now a harmonic potential Ve (r) = 2 mw3r?.

@ increase interactions: non-Gaussian state with size > ag
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GPE

Solution of GPE in a harmonic trap

Consider now a harmonic potential Ve (r) = 2 mw3r?.

@ large interactions: Thomas-Fermi profile of radius Rtr
Vext ()Y + g [P =~ pyp = n(r) = [ — Vexe(r)]/g

1 /2
Inverted parabola of radius Rrrp = — ;M LPL
w

Hélene Perrin, LPL — Light and Cold Atoms 2025 2D quantum gases — Lecture 1



Time-dependent GPE

Study of the dynamics: out of equilibrium dynamics away from the ground state.
Described by the time-dependent Gross-Pitaevskii equation

v
2m

RO = — + Vet (N0 + g |20

Hélene Perrin, LPL — Light and Cold Atoms 2025 2D quantum gases — Lecture 1



Hydrodynamics

Equivalent formulation of GPE with hydrodynamics equations:

B(r, ) = \/n(r, £) e
(1) On+V-(nv)=0 continuity equation
R A(vn) 1

(2) moiv = —V <—2m NG + §mv2 + Vixt + gn>

(2) Euler equation

v = %VG fluid velocity = V x v =0 irrotational flow
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Hydrodynamics and superfluidty

The hydrodynamics equations describe
@ The condensate expansion in a time-of-flight
@ The collective modes (breathing mode, quadrupolar mode. . .)
@ More generally the excitations: phonons, solitons, free particles, quantized vortices
°

The formation of vortices in a rotating fluid

A signature of superfluidity: a vortex
lattice in a rotating condensate.

Cornell's group
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Dynamics
Homogeneous gas: the Bogolubov spectrum

Consider Veyt = 0. What is the small amplitude excitation spectrum around

equilibrium (no = p/g)?
Write n = ng + dn and linearize for dn and v

(1) Oron+ noV - (v) =0

h% A (6n)
2 OV = — ]
(2 mow= v( 5 gin
Look for a plane wave solution 6n = §nge™ =/t same for v:
(1) —mwdon + mnok - (v) =0
h2 2
(2) —wmnov = —k ( am on +gn05n>
2,4 2
G P +gokf with  gno = 1
4m? LPL
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Dynamics

Bogolubov spectrum

Sound and particles

h2k* o
_ B e
w 4m?2 * m

Two relevant limits:

@ k — 0: w =~ kc = sound waves with the speed of sound

C =

1

m

ie. p=mc?

22 . . . .
@ k— o0 hw~p+ % = particle-like excitations on top of the condensed

particles bringing an energy u

Boundary between the two regimes: k ~ ¢! with

&=

h
2mu

= Jame E

1 h
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Dynamics

Bogolubov spectrum

Sound and particles

n2k*
w=1\/—s + —k?
4m?2  m
w
A . l . _ ﬁiki V4
----- particles: iw = p + > m //
----- sound: w = ck P
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Dynamics

Bogolubov spectrum

Experimental observation

Selective excitation at (k,w) with Bragg diffraction

14+ 2nR"

124 o]
= 107 o= AT linear spectrum (phonons) at small k:
i 84 5o n.s:—;.c:l;..; 20 25 30 ,/” W(k) == Ck
& %]27R" g quadratic spectrum at large k
% al =

2— Steinhauer et al., PRL 88, 120407 (2002)

O T = I- T T T T T

0O 2 4 6 8 10 12 14
k (um™)
Warning: Linear at small k for interacting gases only! LPL
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Dynamics

Signatures of superfluidity

(1) Critical velocity
Consequence of Bogolubov dispersion E(p) > ¢p: Landau criterion

@ Consider an object of mass M and momentum P dragged into the fluid at a
speed v = P/M: can its motion be damped by creating an excitation of
momentum p* in the condensate?

e Momentum and energy conservation:
Before: P, E = P2/2M + 0
After: P’ + p*, E = P"2/2M + E(p*)

e From P’ = P — p* it follows that

P . p* *2
P = E(p) 1 P

> E(p*) = cp’

M 2M —
e Excitations are created only if v > c¢: existence of a critical velocity (Warning: ¢
vanishes if g — 0) LPL
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Dynamics

Signatures of superfluidity

(1) Critical velocity

Consequence of Bogolubov dispersion E(p) > ¢p: Landau criterion

@ Consider an object of mass M and momentum P dragged into the fluid at a
speed v = P/M: can its motion be damped by creating an excitation of
momentum p* in the condensate?

e Momentum and energy conservation: gizz a
Before: P, E = P?/2M +0 '«Qmo
After: P' + p*, E = P?/2M + E(p*) £ o 4
e From P’ = P — p* it follows that § ol ¢ 4 +
P.p* *2 0 0.5 1 1.5 2
Tp =v-p"=E(p*)+ gw > E(p*) > cp* Desbuquois et al.,

Nat. Phys. 8, 645 (2012)

e Excitations are created only if v > c¢: existence of a critical velocity (Warning: ¢
vanishes if g — 0)
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Dynamics

Signatures of superfluidity

(2) Quantized vortices

@ V x v =0 unless at positions r, such that oo Iy
n(ry) =0 -
o Around such a point r, = 0, ¥(r) ~ \/nge’* //’/
= rotation with 1/r velocity field v = %%89 = o
@ ¢ is uniquely defined = ¢ € Z ///
oC:fv~ds:€%, lez 1 e

vortex wavefunction (modulus)

the fluid rotates with a quantized circulation
S. Huber's course, ETHZ

@ Size of the hole: v > ¢ for r < % =V2¢
= ~healing length ¢
e Kinetic energy of a vortex: Ey, o £2

e Multiply charged vortices || > 1 are unstable
= Vortices arrange into an Abrikosov lattice
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Dynamics

Dynamics of the trapped Bose gas

Collective modes in a harmonic trap

Derivation of quantized, low energy modes in a trap (large scale). We start from the
hydrodynamics equations:

(1) Oen+ V- (nv) =0
[ mAWA
(2) MOy = =V (_2M NG +§Mv2+ V(r)+gn—,u)

Neglect quantum pressure
Linearize around the Thomas-Fermi solution n(r) = [u — V/(r)] /g, we get

—V
9%on = —w*én=V - {”M(')v(sn] =V [c*(r)Vén]

@ 3D spherical harmonic trap: V(r) = %mw%rz. ny, £, m quantum numbers:

sn(r) = P (r/R)r Yim(6, 6)

Get w(ny,€) = wo [2n? + 2n.0 + 3n, + (] 1/2 LPL

[Stringari, PRL 77, 2360 (1996)] ez
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Dynamics

Dynamics of the trapped Bose gas

Excitation spectrum and collective modes

&le

Excitation energy

@ Quantized excitation spectrum

@ Example for the isotropic 2D gas: n,, m are good quantum numbers:

gy m) = wo 22 + 2| + 20, + ]

@ Full spectrum:

10

@

+ = 0 branch

0
0 5 10 15 20 25 30
Quantum number m

1/2
/ [Stringari, PRA 58, 2385 (1998)]

red line: gives the critical velocity, related
to surface modes [Anglin, PRL 87, 240401

(2001)]

Ex: surface modes at the outer edge of an

annular Bose gas oL
[Dubessy et al., PRA 86, 011602 (2012)] o
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Dynamics

Dynamics of the trapped Bose gas

Excitation spectrum and collective modes

@ Quantized excitation spectrum
@ Example for the isotropic 2D gas: n,, m are good quantum numbers:

w(ny, m) = wp [2n3 + 2n,|m| + 2n, + ]m|]1/2 ) ! W
w - monopple n=1m=0: 4_;‘ y
wo superfluid and thermal t N
signature of the EOS |
2
1 - quadrupole n, =0,m = +2 4 . <
0 superfluid only
0 5 m !
- scissors for wy # wy,
- dipole mode n, = 0, m =1, both superfluid only gl
superfluid and thermal: centre of mass <<-:> 3
oscillation (R0
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Dynamics

Signatures of superfluidty

(3) Specific collective modes

Specific modes of a superfluid gas: quadrupole mode, scissors mode: oscillation of
(xy) o< @ in an anisotropic harmonic trap wy # w, = Use the scissors mode to
characterize a superfluid dilute gas

. (a)

@ T > T.: no scissors mode in the thermal phase in the | i A
collisionless regime, only beat notes of harmonic 2. | {W v\% YA e
modes w4 = wx £ wy ?j 7 \‘ / N

. (b)‘

e T < T.: scissors mode expected at ws. = (/w2 + wf, @ _@* .'/'”;_ /‘/\ +/\\L f j,&\ fﬁ\ .

for a superfluid 5. ) \\vﬁ Y ‘v/ \*5/ \‘/ \
Theory: Guéry-Odelin & Stringari, PRL 83, 4452 (1999); N .
Experiment: Maragd et al., PRL 84, 2056 (2000) PR R R R A AR R

Time (ms)
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Dynamics
Summary

BEC occurs below T, (or above N¢) in a 3D box or in a harmonic trap in 2D or 3D

The dynamics of the condensate is captured in the mean-field regime by GPE or
the hydrodynamics equations

@ A weakly interacting BEC is a superfluid
@ Superfluidity should be probed dynamically
@ Signatures include critical velocity, vortices, collective modes

Next lecture: two-dimensional Bose gases and the BKT transition.

Hélene Perrin, LPL — Light and Cold Atoms 2025 2D quantum gases — Lecture 1



	BEC in non interacting Bose gases
	Interacting Bose gases: GPE
	Hydrodynamics of Bose gases

