Course on Two-dimensional Bose gases Lecture 1: Bose-Einstein condensation, interactions and superfluidity

Hélène Perrin

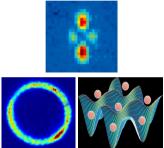
Laboratoire de physique des lasers CNRS & Université Sorbonne Paris Nord

IV School on Light and Cold Atoms São Paulo, Oct 20–31, 2025

Quantum gases

Quantum gases benefit from a high degree of control of their external and internal degrees of freedom:

- \bullet control of the temperature 1 nK 1 μ K
- interaction strength: scattering length a
- confinement geometry
- periodic potentials (optical lattices)
- low dimensional systems (1D, 2D)
- several internal states, bosons or fermions
- easy optical detection



 \Rightarrow an ideal system for the study of superfluid dynamics in 2D.

Outline of the course

- Lecture 1: Bose-Einstein condensation, interactions and superfluidity
- Lecture 2: Two-dimensional Bose gases (static)
- Lecture 3: Rotating two-dimensional Bose gases

Outline of the lecture

BEC in non interacting Bose gases

2 Interacting Bose gases: GPE

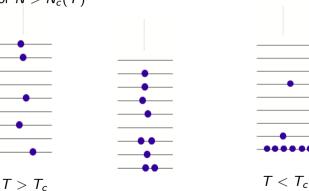
3 Hydrodynamics of Bose gases

References for the lecture

- F. Dalfovo, S. Giorgini, L. Pitaevskii and S. Stringari, *Theory of Bose-Einstein condensation in trapped gases*, Rev. Mod. Phys. **71**, 463 (1999)
- C. J. Pethick and H. Smith, Bose-Einstein Condensation in Dilute Gases, Cambridge (2008)
- Lev Pitaevskii and Sandro Stringari, Bose-Einstein condensation, Oxford (2003)
- Lev Pitaevskii and Sandro Stringari, Bose-Einstein Condensation and Superfluidity, Oxford (2016)
- 6 Lectures at Collège de France by Jean Dalibard (in French), academic year 2015-2016

Bosons at low temperature: Bose-Einstein condensation

Bose-Einstein condensation: saturation of the number of particles in excited states N' and macroscopic accumulation $N_0 \sim N$ of particles in the ground state for $T < T_c(N)$ or $N > N_c(T)$



 $T \sim T_c$

 $N_0 \ll N$

A mechanism linked to Bose-Einstein statistics:

$$f(E_i) = \frac{1}{e^{\beta(E_i - \mu)} - 1}$$

with
$$\beta = 1/k_BT$$

 $N_0 \sim N$

A mechanism linked to the Bose statistics

Assume single-particle Hamiltonian with non degenerate ground state, energy E_0 .

- Bose-Einstein distribution: occupation number $f(E_i) = \frac{1}{e^{\beta(E_i \mu)} 1}$, $\beta = 1/k_BT$
- $f > 0 \Rightarrow$ chemical potential $\mu < E_i$ for all $i \Rightarrow \mu < E_0$ $\Rightarrow f(E_i) < 1/[e^{\beta(E_i - E_0)} - 1]$
- Saturation of the number of particles in excited states N':

$$\mathcal{N}' = \sum_{i \neq 0} f(E_i) = \sum_{i \neq 0} \frac{1}{e^{\beta(E_i - \mu)} - 1} < \mathcal{N}'_{\max}(\mathcal{T}) = \sum_{i \neq 0} \frac{1}{e^{\beta(E_i - E_0)} - 1}$$

- BEC occurs if $N'_{\text{max}}(T)$ is finite: $N_0 = N N' > N N'_{\text{max}}(T)$ macroscopic
- ullet Critical atom number $N>N_c(T)\simeq N'_{
 m max}(T)$ or temperature $T_c(N)$ defined by $N_c(T_c)=N$

Does Bose-Einstein condensation occur?

- Semi-classical description if level spacing $\ll k_B T$: use the density of states $\rho(\varepsilon)$
- The convergence of the sum on N_i' depends on the behavior of $\rho(\varepsilon)$:

$$N_c(T) = \int_{E_0}^{\infty} \rho(\varepsilon) \frac{1}{e^{\beta(\varepsilon - E_0)} - 1} d\varepsilon = \int_0^{\infty} \rho(\varepsilon) \frac{e^{-\beta \varepsilon}}{1 - e^{-\beta \varepsilon}} d\varepsilon$$

- Integral converges near $\varepsilon \to \infty$ if $\rho(\varepsilon)$ doesn't increase exponentially
- Near $\varepsilon \to 0$, integrand $\sim \rho(\varepsilon)/(\beta \varepsilon) \Rightarrow$ converges if $\rho(\varepsilon) \to 0$.

Does Bose-Einstein condensation occur?

• An important particular case: power law density of state $\rho(\varepsilon) \propto (\varepsilon - \varepsilon_0)^q$ with $\varepsilon > \varepsilon_0 \Rightarrow$ converges for q > 0.

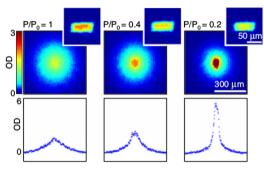
$$N_c(T) \propto \sum_{n=1}^{\infty} \int_0^{\infty} \varepsilon^q e^{-n\beta\varepsilon} d\varepsilon \quad \propto \quad (k_B T)^{q+1} \sum_{n=1}^{\infty} \frac{1}{n^{q+1}} = (k_B T)^{q+1} g_{q+1}(1)$$

Fraction of condensed particles:

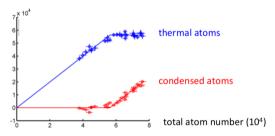
$$N_c(T_c) = N \implies \frac{N_0}{N} = 1 - \left(\frac{T}{T_c}\right)^{q+1}$$

Bose-Einstein condensation in a 3D box

DOS in a box in dimension D: $\rho(E) \propto E^{D/2-1} \Rightarrow \text{only } D = 3!$ In a 3D box BEC for $n\lambda_T^3 > 2.6$ with $\lambda_T = \frac{h}{\sqrt{2\pi m k_B T}}$: $N_c \propto T^{3/2}$



measure N_0/N , 3D box potential ^{39}K , tunable interactions PRL **110**, 200406 (2013)

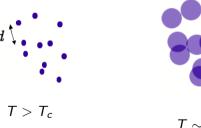


Saturation of thermal particles Hadzibabic's group, 2013

Interpretation of critical temperature

Degeneracy criterion: more than one particle per quantum state.

Size of a state: $\lambda_T = \frac{h}{\sqrt{2\pi m k_B T}}$ thermal de Broglie wavelength



 $\lambda \tau \ll d$

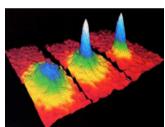
all particles

Bose-Einstein condensation in a harmonic trap

- In a harmonic trap ω_0 in dimension D, $\rho(E) \propto E^{D-1}$ \Rightarrow power law with k = D 1
- BEC occurs for D > 1 i.e. D = 2 or D = 3 [Bagnato 1987]

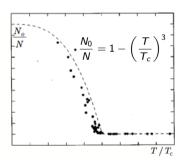
3D harmonic trap:

$$k_B T_c = \hbar \omega_0 N^{1/3} \gg \hbar \omega_0$$



Cornell & Wieman

Anderson et al., Science **269**, 198 (1995)

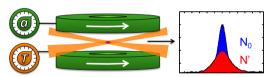


Ensher et al. PRL 77, 4984 (1996)

Bose-Einstein condensation in a harmonic trap

- Shift in condensation temperature? T_c lower than expected.
- Do the population in excited states saturate?

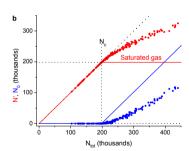
3D harmonic trap:



condensation in momentum AND in space

Tammuz et al., PRL 106, 230401 (2011)

N' doesn't saturate!

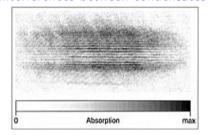


⇒ interactions play a role and prevent the density to further increase in the trap center

Role of interactions

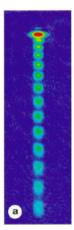
Problem: how much do interactions modify this picture of accumulation in a single-particle state? $H = \sum_{i=1}^{N} h_0^{(i)} + \sum_{i < i} V(r_i - r_i)$

Test: interferences between condensates



Andrews et al., Science 275, 637 (1997)

- the coherence length is the cloud size
- weak interactions (dilute gas)
- a mean field description is appropriate



Role of interactions

How to find the ground state of $H = \sum_{i=1}^{N} h_0^{(i)} + \sum_{i < j} V(r_i - r_j)$?

- assume weak interactions (dilute gas)
- mean field description: assume the same wavefunction $\psi(\mathbf{r})$ for all atoms i.e. $|\Psi\rangle = |\psi\rangle_1 \otimes \cdots \otimes |\psi\rangle_N$, $\psi(\mathbf{r})$ to be found
- minimize the energy functional $\langle \Psi | H | \Psi \rangle$ to find ψ
- ullet this yields the Gross-Pitaevskii equation (GPE) for ψ

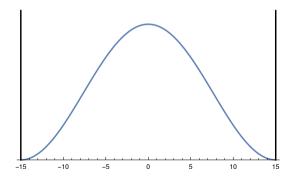
$$\left(\underbrace{-\frac{\hbar^2 \nabla^2}{2m}}_{E_{\rm kin}} + \underbrace{V_{\rm ext}(\mathbf{r})}_{E_{\rm pot}} + \underbrace{\mathbf{g} |\psi|^2}_{E_{\rm int}}\right) \psi = \mu \psi$$

- $g=rac{4\pi\hbar^2 a}{m}$ interaction coupling constant, we assume here g>0
- a scattering length
- μ chemical potential = cost to add a particle

Solution of GPE in a box

Consider a box potential of size *L*: $V_{\text{ext}}(\mathbf{r}) = 0 + \text{hard wall b.c.}$

ullet vanishing interactions (Schrödinger): $-\frac{\hbar^2 \nabla^2 \psi}{2m} = \mu \psi$

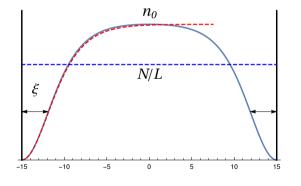


 $\psi(x) \sim \sin(\pi x/L)$ ground state of $h^{(0)}$ \Rightarrow density $\propto \sin^2(\pi x/L)$

Solution of GPE in a box

Consider a box potential of size L: $V_{\text{ext}}(\mathbf{r}) = 0 + \text{hard wall b.c.}$

• increasing interactions:
$$-\frac{\hbar^2 \nabla^2 \psi}{2m} + g |\psi|^2 \psi = \mu \psi$$



density flattens
healing length to recover from the edge

Estimation of healing length:

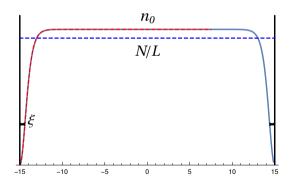
$$\frac{\hbar^2}{2m\xi^2} \simeq \mu$$

$$\Rightarrow \boxed{\xi = \frac{\hbar}{\sqrt{2m\mu}}}$$

Solution of GPE in a box

Consider a box potential of size *L*: $V_{\text{ext}}(\mathbf{r}) = 0 + \text{hard wall b.c.}$

• large interactions: $g |\psi|^2 \psi \simeq \mu \psi \Rightarrow n_0 = \mu/g \simeq N/L$ nearly uniform gas except at the edges within the healing length



Close to the edge:

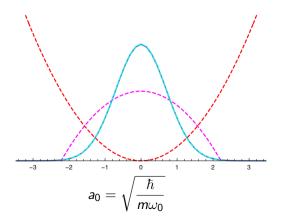
$$\psi(x)\simeq \sqrt{n_0} anh\left(rac{x}{\xi\sqrt{2}}
ight)$$

$$\xi = \frac{\hbar}{\sqrt{2m\mu}}$$

Consider now a harmonic potential $V_{\rm ext}(\mathbf{r}) = \frac{1}{2}m\omega_0^2r^2$.

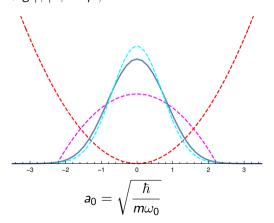
• weak interactions: Gaussian ground state of $h^{(0)}$ with size a_0

$$-\frac{\hbar^2\nabla^2\psi}{2m} + V_{\rm ext}(\mathbf{r})\psi = \mu\psi$$



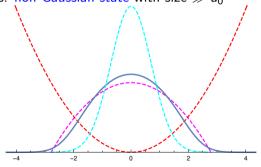
Consider now a harmonic potential $V_{\rm ext}(\mathbf{r}) = \frac{1}{2}m\omega_0^2r^2$.

• increase interactions: deformed Gaussian state with size $> a_0$ $-\frac{\hbar^2 \nabla^2 \psi}{2m} + V_{\rm ext}(\mathbf{r})\psi + g |\psi|^2 \psi = \mu \psi$



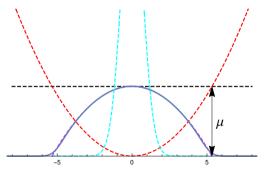
Consider now a harmonic potential $V_{\rm ext}({\bf r})=\frac{1}{2}m\omega_0^2r^2$.

• increase interactions: non-Gaussian state with size $\gg a_0$



Consider now a harmonic potential $V_{\rm ext}(\mathbf{r}) = \frac{1}{2}m\omega_0^2r^2$.

• large interactions: Thomas-Fermi profile of radius R_{TF} $V_{\rm ext}(\mathbf{r})\psi + g |\psi|^2 \psi \simeq \mu \psi \Rightarrow n(r) = [\mu - V_{\rm ext}(\mathbf{r})]/g$



Inverted parabola of radius $R_{TF}=rac{1}{\omega}\sqrt{rac{2\mu}{m}}$

Time-dependent GPE

Study of the dynamics: out of equilibrium dynamics away from the ground state. Described by the time-dependent Gross-Pitaevskii equation

$$-i\hbar\partial_t\psi=-rac{\hbar^2
abla^2\psi}{2m}+V_{
m ext}({f r})\psi+g\,|\psi|^2\psi$$

Hydrodynamics

Equivalent formulation of GPE with hydrodynamics equations:

$$\psi(\mathbf{r},t) = \sqrt{n(\mathbf{r},t)} e^{i\theta(\mathbf{r},t)}$$

(1)
$$\partial_t \mathbf{n} + \nabla \cdot (\mathbf{n} \mathbf{v}) = 0$$
 continuity equation

(2)
$$m\partial_t \mathbf{v} = -\nabla \left(-\frac{\hbar^2}{2m} \frac{\Delta \left(\sqrt{n} \right)}{\sqrt{n}} + \frac{1}{2} m \mathbf{v}^2 + V_{\text{ext}} + g \mathbf{n} \right)$$

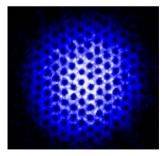
(2) Euler equation

$$\mathbf{v} = \frac{\hbar}{m} \nabla \theta$$
 fluid velocity $\Rightarrow \nabla \times \mathbf{v} = 0$ irrotational flow

Hydrodynamics and superfluidty

The hydrodynamics equations describe

- The condensate expansion in a time-of-flight
- The collective modes (breathing mode, quadrupolar mode. . .)
- More generally the excitations: phonons, solitons, free particles, quantized vortices
- The formation of vortices in a rotating fluid



A signature of superfluidity: a vortex lattice in a rotating condensate.

Homogeneous gas: the Bogolubov spectrum

Consider $V_{\rm ext}=0$. What is the small amplitude excitation spectrum around equilibrium $(n_0=\mu/g)$?

Write $n = n_0 + \delta n$ and linearize for δn and **v**

(1)
$$\partial_t \delta \mathbf{n} + n_0 \nabla \cdot (\mathbf{v}) = 0$$

(2)
$$m\partial_t \mathbf{v} = -\nabla \left(-\frac{\hbar^2}{2m} \frac{\Delta \left(\delta \mathbf{n} \right)}{2n_0} + g \delta \mathbf{n} \right)$$

Look for a plane wave solution $\delta n = \delta n_0 e^{ikz - i\omega t}$, same for v:

$$(1) -m\omega \delta n + mn_0 \mathbf{k} \cdot (\mathbf{v}) = 0$$

(2)
$$-\omega m n_0 \mathbf{v} = -\mathbf{k} \left(\frac{\hbar^2 k^2}{4m} \delta n + g n_0 \delta n \right)$$

$$\Rightarrow \boxed{\omega^2 = \frac{\hbar^2 k^4}{4m^2} + g n_0 \frac{k^2}{m}} \quad \text{with} \quad g n_0 = \mu$$

Bogolubov spectrum

Sound and particles

$$\omega = \sqrt{\frac{\hbar^2 k^4}{4m^2} + \frac{\mu}{m} k^2}$$

Two relevant limits:

• $k \to 0$: $\omega \simeq kc \Rightarrow$ sound waves with the speed of sound

$$c = \sqrt{\frac{\mu}{m}}$$
 i.e. $\mu = mc^2$

• $k \to \infty$: $\hbar\omega \simeq \mu + \frac{\hbar^2 k^2}{2m} \Rightarrow$ particle-like excitations on top of the condensed particles bringing an energy μ

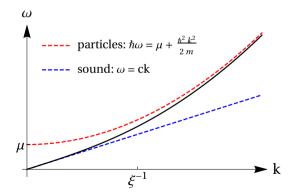
Boundary between the two regimes: $k \simeq \xi^{-1}$ with

$$\xi = \frac{\hbar}{\sqrt{2m\mu}} = \frac{1}{\sqrt{2}} \frac{\hbar}{mc}$$

Bogolubov spectrum

Sound and particles

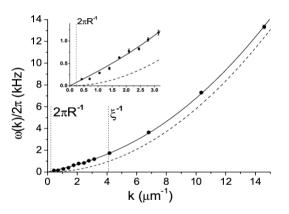
$$\omega = \sqrt{\frac{\hbar^2 k^4}{4m^2} + \frac{\mu}{m} k^2}$$



Bogolubov spectrum

Experimental observation

Selective excitation at (k, ω) with Bragg diffraction



linear spectrum (phonons) at small k: $\omega(k) = ck$

quadratic spectrum at large k

Steinhauer et al., PRL 88, 120407 (2002)

Warning: Linear at small k for interacting gases only!

Signatures of superfluidity

(1) Critical velocity

Consequence of Bogolubov dispersion $E(p) \ge cp$: Landau criterion

- Consider an **object** of mass M and momentum P dragged into the fluid at a speed v = P/M: can its motion be damped by creating an excitation of momentum p^* in the condensate?
- Momentum and energy conservation:

Before:
$$P$$
, $E = P^2/2M + 0$
After: $P' + p^*$, $E = P'^2/2M + E(p^*)$

• From $P' = P - p^*$ it follows that

$$\frac{P \cdot p^*}{M} = v \cdot p^* = E(p^*) + \frac{p^{*2}}{2M} \ge E(p^*) \ge cp^*$$

• Excitations are created only if $v \ge c$: existence of a critical velocity (Warning: c vanishes if $g \to 0$)

Signatures of superfluidity

(1) Critical velocity

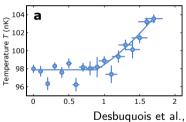
Consequence of Bogolubov dispersion $E(p) \ge cp$: Landau criterion

- Consider an **object** of mass M and momentum P dragged into the fluid at a speed v = P/M: can its motion be damped by creating an excitation of momentum p^* in the condensate?
- Momentum and energy conservation:

Before:
$$P$$
, $E = P^2/2M + 0$
After: $P' + p^*$, $E = P'^2/2M + E(p^*)$

• From $P' = P - p^*$ it follows that

$$\frac{P \cdot p^*}{M} = v \cdot p^* = E(p^*) + \frac{p^{*2}}{2M} \ge E(p^*) \ge cp^*$$



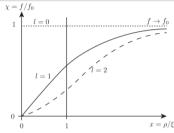
Desbuquois et al., Nat. Phys. **8**, 645 (2012)

• Excitations are created only if $v \ge c$: existence of a critical velocity (Warning: c vanishes if $g \to 0$)

Signatures of superfluidity

(2) Quantized vortices

- $\nabla \times v = 0$ unless at positions $\mathbf{r_v}$ such that $n(\mathbf{r_v}) = 0$
- Around such a point $\mathbf{r_v} = 0$, $\psi(\mathbf{r}) \simeq \sqrt{n_0} \mathrm{e}^{i\ell\theta}$ \Rightarrow rotation with 1/r velocity field $\mathbf{v} = \frac{\hbar}{m} \frac{\ell}{r} \mathbf{e}_{\theta}$
- ullet ψ is uniquely defined $\Rightarrow \ell \in \mathbb{Z}$
- $C = \oint v \cdot ds = \ell \frac{h}{M}$, $\ell \in \mathbb{Z}$ the fluid rotates with a quantized circulation
- Size of the hole: v > c for $r < \frac{\hbar}{mc} = \sqrt{2}\xi$ $\Rightarrow \sim$ healing length ξ
- Kinetic energy of a vortex: $E_{\rm kin} \propto \ell^2$
- Multiply charged vortices $|\ell| > 1$ are unstable \Rightarrow Vortices arrange into an Abrikosov lattice



vortex wavefunction (modulus)

S. Huber's course, ETHZ

Dynamics of the trapped Bose gas

Collective modes in a harmonic trap

Derivation of quantized, low energy modes in a trap (large scale). We start from the hydrodynamics equations:

(1)
$$\partial_t \mathbf{n} + \nabla \cdot (\mathbf{n} \mathbf{v}) = 0$$

(2)
$$M\partial_t \mathbf{v} = -\nabla \left(-\frac{\hbar^2}{2M} \frac{\Delta \left(\sqrt{\mathbf{n}} \right)}{\sqrt{\mathbf{n}}} + \frac{1}{2} M \mathbf{v}^2 + V(\mathbf{r}) + g \mathbf{n} - \mu \right)$$

- Neglect quantum pressure
- Linearize around the Thomas-Fermi solution $n(\mathbf{r}) = [\mu V(\mathbf{r})]/g$, we get

$$\partial_t^2 \delta n = -\omega^2 \delta n = \nabla \cdot \left[\frac{\mu - V(\mathbf{r})}{M} \nabla \delta n \right] = \nabla \cdot \left[c^2(\mathbf{r}) \nabla \delta n \right]$$

• 3D spherical harmonic trap: $V(\mathbf{r}) = \frac{1}{2}m\omega_0^2 r^2$. n_r , ℓ , m quantum numbers: $\delta n(\mathbf{r}) = P_{\ell}^{(2n_r)}(r/R)r^{\ell}Y_{\ell m}(\theta,\phi)$

• Get
$$\omega(n_r, \ell) = \omega_0 \left[2n_r^2 + 2n_r\ell + 3n_r + \ell \right]^{1/2}$$
 [Stringari, PRL 77, 2360 (1996)]

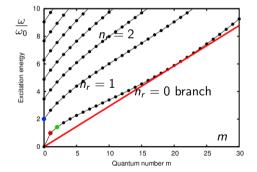
Dynamics of the trapped Bose gas

Excitation spectrum and collective modes

- Quantized excitation spectrum
- Example for the isotropic 2D gas: n_r , m are good quantum numbers:

$$\omega(n_r, m) = \omega_0 \left[2n_r^2 + 2n_r |m| + \frac{2n_r}{|m|} + \frac{2n_r}{|m|} \right]^{1/2}$$
 [Stringari, PRA **58**, 2385 (1998)]

• Full spectrum:



red line: gives the critical velocity, related to surface modes [Anglin, PRL **87**, 240401 (2001)]

Ex: surface modes at the outer edge of an annular Bose gas

[Dubessy et al., PRA 86, 011602 (2012)]

Dynamics of the trapped Bose gas

Excitation spectrum and collective modes

- Quantized excitation spectrum
- Example for the isotropic 2D gas: n_r , m are good quantum numbers:

$$\omega(n_r, m) = \omega_0 \left[2n_r^2 + 2n_r |m| + \frac{2n_r}{r} + |m| \right]^{1/2}$$



- dipole mode $n_r = 0, m = 1$, both superfluid and thermal: centre of mass oscillation

- monopole $n_r = 1$, m = 0: superfluid and thermal signature of the EOS
- quadrupole $n_r = 0, m = \pm 2$ superfluid only
- scissors for $\omega_x \neq \omega_y$ superfluid only

Signatures of superfluidty

(3) Specific collective modes

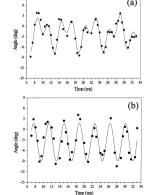
Specific modes of a superfluid gas: quadrupole mode, scissors mode: oscillation of $\langle xy \rangle \propto \theta$ in an **anisotropic** harmonic trap $\omega_x \neq \omega_y \Rightarrow$ Use the scissors mode to characterize a superfluid dilute gas

• $T > T_c$: no scissors mode in the thermal phase in the **collisionless** regime, only beat notes of harmonic modes $\omega_+ = \omega_{\rm x} \pm \omega_{\rm y}$

• $T < T_c$: scissors mode expected at $\omega_{sc} = \sqrt{\omega_x^2 + \omega_y^2}$ for a **superfluid**

Theory: Guéry-Odelin & Stringari, PRL 83, 4452 (1999);

Experiment: Maragò et al., PRL **84**, 2056 (2000)



Summary

- BEC occurs below T_c (or above N_c) in a 3D box or in a harmonic trap in 2D or 3D
- The dynamics of the condensate is captured in the mean-field regime by GPE or the hydrodynamics equations
- A weakly interacting BEC is a superfluid
- Superfluidity should be probed dynamically
- Signatures include critical velocity, vortices, collective modes

Next lecture: two-dimensional Bose gases and the BKT transition.

