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BEC GPE Dynamics

Quantum gases

Quantum gases benefit from a high degree of control of their external and internal
degrees of freedom:

control of the temperature 1 nK – 1 µK

interaction strength: scattering length a

confinement geometry

periodic potentials (optical lattices)

low dimensional systems (1D, 2D)

several internal states, bosons or fermions

easy optical detection

⇒ an ideal system for the study of superfluid dynamics in 2D.
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Outline of the course

Lecture 1: Bose-Einstein condensation, interactions and superfluidity

Lecture 2: Two-dimensional Bose gases (static)

Lecture 3: Rotating two-dimensional Bose gases
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Outline of the lecture

1 BEC in non interacting Bose gases

2 Interacting Bose gases: GPE

3 Hydrodynamics of Bose gases
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Bosons at low temperature: Bose-Einstein condensation

Bose-Einstein condensation: saturation of the number of particles in excited states N ′

and macroscopic accumulation N0 ∼ N of particles in the ground state for T < Tc(N)
or N > Nc(T )

T > Tc

N0 ≪ N
T ∼ Tc

T < Tc

N0 ∼ N

A mechanism linked to
Bose-Einstein statistics:

f (Ei ) =
1

eβ(Ei−µ)−1

with β = 1/kBT
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A mechanism linked to the Bose statistics

Assume single-particle Hamiltonian with non degenerate ground state, energy E0.

Bose-Einstein distribution: occupation number f (Ei ) =
1

eβ(Ei−µ)−1
, β = 1/kBT

f > 0 ⇒ chemical potential µ < Ei for all i ⇒ µ < E0

⇒ f (Ei ) < 1/[eβ(Ei−E0) − 1]

Saturation of the number of particles in excited states N ′:

N ′ =
∑

i ̸=0

f (Ei ) =
∑

i ̸=0

1

eβ(Ei−µ) − 1
< N ′

max(T ) =
∑

i ̸=0

1

eβ(Ei−E0) − 1

BEC occurs if N ′
max(T ) is finite: N0 = N − N ′ > N − N ′

max(T ) macroscopic

Critical atom number N > Nc(T ) ≃ N ′
max(T ) or temperature Tc(N) defined by

Nc(Tc) = N
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Does Bose-Einstein condensation occur?

Semi-classical description if level spacing ≪ kBT : use the density of states ρ(ε)

The convergence of the sum on N ′
i depends on the behavior of ρ(ε):

Nc(T ) =

∫ ∞

E0

ρ(ε)
1

eβ(ε−E0) − 1
dε =

∫ ∞

0
ρ(ε)

e−βε

1− e−βε
dε

Integral converges near ε→ ∞ if ρ(ε) doesn’t increase exponentially

Near ε→ 0, integrand ∼ ρ(ε)/(βε) ⇒ converges if ρ(ε) → 0.
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Does Bose-Einstein condensation occur?

An important particular case: power law density of state
ρ(ε) ∝ (ε− ε0)

q with ε > ε0 ⇒ converges for q > 0.

Nc(T ) ∝
∞∑

n=1

∫ ∞

0
εqe−nβεdε ∝ (kBT )q+1

∞∑

n=1

1

nq+1
= (kBT )q+1gq+1(1)

Fraction of condensed particles:

Nc(Tc) = N =⇒ N0

N
= 1−

(
T

Tc

)q+1
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Bose-Einstein condensation in a 3D box

DOS in a box in dimension D: ρ(E ) ∝ ED/2−1 ⇒ only D = 3!
In a 3D box BEC for nλ3T > 2.6 with λT = h√

2πmkBT
: Nc ∝ T 3/2

measure N0/N, 3D box potential
39K , tunable interactions
PRL 110, 200406 (2013)

Hadzibabic group

Saturation of thermal particles
Hadzibabic’s group, 2013
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Interpretation of critical temperature

Degeneracy criterion: more than one particle per quantum state.
Size of a state: λT = h√

2πmkBT
thermal de Broglie wavelength

T > Tc

λT ≪ d

T ∼ Tc

λT ∼ d

T < Tc

λT > d

a single wavefunction for
all particles
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Bose-Einstein condensation in a harmonic trap

In a harmonic trap ω0 in dimension D, ρ(E ) ∝ ED−1

⇒ power law with k = D − 1

BEC occurs for D > 1 i.e. D = 2 or D = 3 [Bagnato 1987]

3D harmonic trap:
kBTc = ℏω0N

1/3 ≫ ℏω0

Cornell & Wieman

Anderson et al., Science 269, 198 (1995)

N0

N
= 1−

(
T

Tc

)3

Ensher et al. PRL 77, 4984 (1996)
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Bose-Einstein condensation in a harmonic trap

Shift in condensation temperature? Tc lower than expected.

Do the population in excited states saturate?

3D harmonic trap:
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condensation in momentum AND in space

Tammuz et al., PRL 106, 230401 (2011)

N ′ doesn’t saturate!
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⇒ interactions play a role and prevent the density to further increase in the trap center
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Role of interactions

Problem: how much do interactions modify this picture of accumulation in a

single-particle state? H =
∑N

i=1 h
(i)
0 +

∑
i<j V (ri − rj)

Test: interferences between condensates

Andrews et al., Science 275, 637 (1997)

the coherence length is the cloud size

weak interactions (dilute gas)

a mean field description is appropriate Bloch et al., Nature 403, 166 (2000)
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Role of interactions

How to find the ground state of H =
∑N

i=1 h
(i)
0 +

∑
i<j V (ri − rj)?

assume weak interactions (dilute gas)

mean field description: assume the same wavefunction ψ(r) for all atoms i.e.
|Ψ⟩ = |ψ⟩1 ⊗ · · · ⊗ |ψ⟩N , ψ(r) to be found

minimize the energy functional ⟨Ψ|H|Ψ⟩ to find ψ

this yields the Gross-Pitaevskii equation (GPE) for ψ

(
−ℏ2∇2

2m︸ ︷︷ ︸
Ekin

+Vext(r)︸ ︷︷ ︸
Epot

+ g |ψ|2︸ ︷︷ ︸
Eint

)
ψ = µψ

g = 4πℏ2a
m interaction coupling constant, we assume here g > 0

a scattering length
µ chemical potential = cost to add a particle
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Solution of GPE in a box

Consider a box potential of size L: Vext(r) = 0 + hard wall b.c.

vanishing interactions (Schrödinger): −ℏ2∇2ψ

2m
= µψ

-15 -10 -5 0 5 10 15

ψ(x) ∼ sin (πx/L) ground state of h(0)

⇒ density ∝ sin2 (πx/L)
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Solution of GPE in a box

Consider a box potential of size L: Vext(r) = 0 + hard wall b.c.

increasing interactions: −ℏ2∇2ψ
2m + g |ψ|2ψ = µψ

ξ

n0

N/L

-15 -10 -5 0 5 10 15

density flattens
healing length to recover from the edge

Estimation of healing length:
ℏ2

2mξ2
≃ µ

⇒ ξ =
ℏ√
2mµ
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Solution of GPE in a box

Consider a box potential of size L: Vext(r) = 0 + hard wall b.c.

large interactions: g |ψ|2ψ ≃ µψ ⇒ n0 = µ/g ≃ N/L nearly uniform gas
except at the edges within the healing length

ξ

n0

N/L

-15 -10 -5 0 5 10 15

Close to the edge:

ψ(x) ≃ √
n0 tanh

(
x

ξ
√
2

)

ξ =
ℏ√
2mµ
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Solution of GPE in a harmonic trap

Consider now a harmonic potential Vext(r) =
1
2mω

2
0r

2.

weak interactions: Gaussian ground state of h(0) with size a0
−ℏ2∇2ψ

2m + Vext(r)ψ = µψ

-3 -2 -1 0 1 2 3

a0 =

√
ℏ

mω0
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Solution of GPE in a harmonic trap

Consider now a harmonic potential Vext(r) =
1
2mω

2
0r

2.

increase interactions: deformed Gaussian state with size > a0
−ℏ2∇2ψ

2m + Vext(r)ψ + g |ψ|2ψ = µψ

-3 -2 -1 0 1 2 3

a0 =

√
ℏ

mω0
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Solution of GPE in a harmonic trap

Consider now a harmonic potential Vext(r) =
1
2mω

2
0r

2.

increase interactions: non-Gaussian state with size ≫ a0

-4 -2 0 2 4
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Solution of GPE in a harmonic trap

Consider now a harmonic potential Vext(r) =
1
2mω

2
0r

2.

large interactions: Thomas-Fermi profile of radius RTF

Vext(r)ψ + g |ψ|2ψ ≃ µψ ⇒ n(r) = [µ− Vext(r)]/g

μ

-5 0 5

Inverted parabola of radius RTF =
1

ω

√
2µ

m
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Time-dependent GPE

Study of the dynamics: out of equilibrium dynamics away from the ground state.
Described by the time-dependent Gross-Pitaevskii equation

−iℏ∂tψ = −ℏ2∇2ψ

2m
+ Vext(r)ψ + g |ψ|2ψ
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Hydrodynamics

Equivalent formulation of GPE with hydrodynamics equations:
ψ(r, t) =

√
n(r, t) e iθ(r,t)

(1) ∂tn +∇ · (nv) = 0 continuity equation

(2) m∂tv = −∇
(
− ℏ2

2m

∆
(√

n
)

√
n

+
1

2
mv2 + Vext + gn

)

(2) Euler equation

v = ℏ
m∇θ fluid velocity ⇒ ∇× v = 0 irrotational flow
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Hydrodynamics and superfluidty

The hydrodynamics equations describe

The condensate expansion in a time-of-flight

The collective modes (breathing mode, quadrupolar mode. . . )

More generally the excitations: phonons, solitons, free particles, quantized vortices

The formation of vortices in a rotating fluid

Cornell’s group

A signature of superfluidity: a vortex
lattice in a rotating condensate.
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Homogeneous gas: the Bogolubov spectrum

Consider Vext = 0. What is the small amplitude excitation spectrum around
equilibrium (n0 = µ/g)?
Write n = n0 + δn and linearize for δn and v

(1) ∂tδn + n0∇ · (v) = 0

(2) m∂tv = −∇
(
− ℏ2

2m

∆(δn)

2n0
+ gδn

)

Look for a plane wave solution δn = δn0e
ikz−iωt , same for v :

(1) −mωδn +mn0k · (v) = 0

(2) −ωmn0v = −k

(
ℏ2k2

4m
δn + gn0δn

)

⇒ ω2 =
ℏ2k4

4m2
+ gn0

k2

m
with gn0 = µ
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Bogolubov spectrum
Sound and particles

ω =

√
ℏ2k4
4m2

+
µ

m
k2

Two relevant limits:

k → 0: ω ≃ kc ⇒ sound waves with the speed of sound

c =

√
µ

m
i.e. µ = mc2

k → ∞: ℏω ≃ µ+ ℏ2k2

2m ⇒ particle-like excitations on top of the condensed
particles bringing an energy µ

Boundary between the two regimes: k ≃ ξ−1 with

ξ =
ℏ√
2mµ

=
1√
2

ℏ
mc
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Bogolubov spectrum
Sound and particles

ω =

√
ℏ2k4
4m2

+
µ

m
k2

particles: ℏω = μ +
ℏ2

k
2

2 m

sound: ω = ck

ξ-1 k

μ

ω
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Bogolubov spectrum
Experimental observation

Selective excitation at (k, ω) with Bragg diffraction

linear spectrum (phonons) at small k:
ω(k) = ck

quadratic spectrum at large k

Steinhauer et al., PRL 88, 120407 (2002)

Warning: Linear at small k for interacting gases only!
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Signatures of superfluidity
(1) Critical velocity

Consequence of Bogolubov dispersion E (p) ≥ cp: Landau criterion

Consider an object of mass M and momentum P dragged into the fluid at a
speed v = P/M: can its motion be damped by creating an excitation of
momentum p∗ in the condensate?

Momentum and energy conservation:
Before: P, E = P2/2M + 0
After: P ′ + p∗, E = P ′2/2M + E (p∗)

From P ′ = P − p∗ it follows that

P · p∗
M

= v · p∗ = E (p∗) +
p∗2

2M
≥ E (p∗) ≥ cp∗

Excitations are created only if v ≥ c : existence of a critical velocity (Warning: c
vanishes if g → 0)
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FIG. 2: Evidence for a critical velocity. Two typical curves of the temperature after stirring the laser beam at varying
velocities. a, In the superfluid regime, we observe a critical velocity (here vc = 0.87(9) mm/s), below which there is no
dissipation. b, In the normal regime, the heating is quadratic in the velocity. The experimental parameters are (N , T , µ,
r)=(87000, 89 nK, kB ⇥59 nK, 14.4 µm) and (38000, 67 nK, kB ⇥39 nK, 16.6 µm) for a and b, respectively, yielding µloc/kBT =
0.36 and µloc/kBT = 0.04. The data points are the average of typically ten shots. The y error bars show the standard deviation.
The x error bar denotes the spread of velocities along the size of the stirring beam (1/

p
e radius). The solid line is a fit to

the data according to equation (1). Note that the three low-lying data points in a correspond to the completion of half a turn
and are correlated to a displacement of the cloud, which may be responsible for the observed 1.5 nK temperature shift of these
points. c and d, Calculated radial density distribution for the clouds in a and b, respectively. The dashed blue curve shows the
superfluid density, the solid red curve shows the normal density. The stirring beam potential is indicated by the grey shaded
area (in arbitrary units). The densities are calculated via the local density approximation from the prediction for an infinite
uniform system [15]. The jump of the superfluid density from zero to a universal value of 4/�2

dB (where �dB is the thermal de
Broglie wavelength) is a prominent feature of the BKT transition. The normal density makes a corresponding jump to keep
the total density continuous.

izontal plane and !z/2⇡ = 1.4 (1) kHz in the vertical di-
rection. We use gases with temperature T and central
chemical potential µ in the range 65-120 nK and kB⇥(35-
60) nK, respectively. The interaction energy per particle
is given by Uint = (~2g̃/m)n [14], where n is the 2D
spatial density (typically 100 atoms/µm2 in the center),
m the atomic mass and g̃ the dimensionless interaction
strength. Here g̃ =

p
8⇡a/lz = 0.093, where a = 5.3 nm

is the 3D scattering length and lz =
p
~/m!z [14]. The

energy ~!z (kB ⇥ 70 nK) is comparable to kBT and Uint

(⇠ kB ⇥ 40 nK at the trap center), and the gas is in the
quasi-2D regime.

We stir the cloud with a laser beam which creates
a repulsive potential with height Vstir ⇡ kB ⇥ 80 nK.
This is at least four times the local chemical potential
µloc(r) = µ � V (r). The beam has a Gaussian profile
with a waist of w0 = 2.0 (5) µm, which is larger than the
local healing length ⇠ = 1/

p
g̃n (⇡ 0.3 µm at the trap

center), but small compared to the size of the cloud (full
width at half maximum ⇡ 25 µm) (see Fig. 1). We stir
for typically tstir = 0.2 s at constant velocity v in a cir-
cle of radius r centred on the cloud. The intensity of the
stirring beam is ramped on and o↵ in ⇡ 5 ms without any

significant additional heating. Once the stirring beam is
switched o↵, we let the cloud relax for 0.1 s and measure
the temperature.

For each configuration (N , T , r), we repeat this ex-
periment for various v from 0 to 2mm/s. We find two
di↵erent regimes for the response and we show an exam-
ple of each in Fig. 2. In Fig. 2a, there is a clear thresh-
old behaviour with no discernable dissipation below a
critical velocity. In contrast, in Fig. 2b, the tempera-
ture increases without a threshold. We identify these
behaviours as the superfluid and normal response, re-
spectively. To model these data we choose for a given
configuration the fit function

T (v) = Tv=0 +  · tstir · max[(v2 � v2
c ), 0], (1)

which describes the heating of a 2D superfluid in the pres-
ence of a moving point-like defect [16]. In equation (1)
the three fit parameters are the temperature at zero ve-
locity Tv=0, the heating coe�cient , and the critical
velocity vc. In the normal state, the fit finds vc ⇠ 0
and the according quadratic heating stems from the lin-
ear scaling of the drag force. Scattering of photons from
the stirring beam leads to a ‘background heating’ of less

Desbuquois et al.,
Nat. Phys. 8, 645 (2012)
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Signatures of superfluidity
(1) Critical velocity

Consequence of Bogolubov dispersion E (p) ≥ cp: Landau criterion

Consider an object of mass M and momentum P dragged into the fluid at a
speed v = P/M: can its motion be damped by creating an excitation of
momentum p∗ in the condensate?

Momentum and energy conservation:
Before: P, E = P2/2M + 0
After: P ′ + p∗, E = P ′2/2M + E (p∗)

From P ′ = P − p∗ it follows that

P · p∗
M

= v · p∗ = E (p∗) +
p∗2

2M
≥ E (p∗) ≥ cp∗

Excitations are created only if v ≥ c : existence of a critical velocity (Warning: c
vanishes if g → 0)
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FIG. 2: Evidence for a critical velocity. Two typical curves of the temperature after stirring the laser beam at varying
velocities. a, In the superfluid regime, we observe a critical velocity (here vc = 0.87(9) mm/s), below which there is no
dissipation. b, In the normal regime, the heating is quadratic in the velocity. The experimental parameters are (N , T , µ,
r)=(87000, 89 nK, kB ⇥59 nK, 14.4 µm) and (38000, 67 nK, kB ⇥39 nK, 16.6 µm) for a and b, respectively, yielding µloc/kBT =
0.36 and µloc/kBT = 0.04. The data points are the average of typically ten shots. The y error bars show the standard deviation.
The x error bar denotes the spread of velocities along the size of the stirring beam (1/

p
e radius). The solid line is a fit to

the data according to equation (1). Note that the three low-lying data points in a correspond to the completion of half a turn
and are correlated to a displacement of the cloud, which may be responsible for the observed 1.5 nK temperature shift of these
points. c and d, Calculated radial density distribution for the clouds in a and b, respectively. The dashed blue curve shows the
superfluid density, the solid red curve shows the normal density. The stirring beam potential is indicated by the grey shaded
area (in arbitrary units). The densities are calculated via the local density approximation from the prediction for an infinite
uniform system [15]. The jump of the superfluid density from zero to a universal value of 4/�2

dB (where �dB is the thermal de
Broglie wavelength) is a prominent feature of the BKT transition. The normal density makes a corresponding jump to keep
the total density continuous.

izontal plane and !z/2⇡ = 1.4 (1) kHz in the vertical di-
rection. We use gases with temperature T and central
chemical potential µ in the range 65-120 nK and kB⇥(35-
60) nK, respectively. The interaction energy per particle
is given by Uint = (~2g̃/m)n [14], where n is the 2D
spatial density (typically 100 atoms/µm2 in the center),
m the atomic mass and g̃ the dimensionless interaction
strength. Here g̃ =

p
8⇡a/lz = 0.093, where a = 5.3 nm

is the 3D scattering length and lz =
p
~/m!z [14]. The

energy ~!z (kB ⇥ 70 nK) is comparable to kBT and Uint

(⇠ kB ⇥ 40 nK at the trap center), and the gas is in the
quasi-2D regime.

We stir the cloud with a laser beam which creates
a repulsive potential with height Vstir ⇡ kB ⇥ 80 nK.
This is at least four times the local chemical potential
µloc(r) = µ � V (r). The beam has a Gaussian profile
with a waist of w0 = 2.0 (5) µm, which is larger than the
local healing length ⇠ = 1/

p
g̃n (⇡ 0.3 µm at the trap

center), but small compared to the size of the cloud (full
width at half maximum ⇡ 25 µm) (see Fig. 1). We stir
for typically tstir = 0.2 s at constant velocity v in a cir-
cle of radius r centred on the cloud. The intensity of the
stirring beam is ramped on and o↵ in ⇡ 5 ms without any

significant additional heating. Once the stirring beam is
switched o↵, we let the cloud relax for 0.1 s and measure
the temperature.

For each configuration (N , T , r), we repeat this ex-
periment for various v from 0 to 2mm/s. We find two
di↵erent regimes for the response and we show an exam-
ple of each in Fig. 2. In Fig. 2a, there is a clear thresh-
old behaviour with no discernable dissipation below a
critical velocity. In contrast, in Fig. 2b, the tempera-
ture increases without a threshold. We identify these
behaviours as the superfluid and normal response, re-
spectively. To model these data we choose for a given
configuration the fit function

T (v) = Tv=0 +  · tstir · max[(v2 � v2
c ), 0], (1)

which describes the heating of a 2D superfluid in the pres-
ence of a moving point-like defect [16]. In equation (1)
the three fit parameters are the temperature at zero ve-
locity Tv=0, the heating coe�cient , and the critical
velocity vc. In the normal state, the fit finds vc ⇠ 0
and the according quadratic heating stems from the lin-
ear scaling of the drag force. Scattering of photons from
the stirring beam leads to a ‘background heating’ of less

Desbuquois et al.,
Nat. Phys. 8, 645 (2012)
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BEC GPE Dynamics

Signatures of superfluidity
(2) Quantized vortices

∇× v = 0 unless at positions rv such that
n(rv) = 0

Around such a point rv = 0, ψ(r) ≃ √
n0e

iℓθ

⇒ rotation with 1/r velocity field v = ℏ
m
ℓ
r eθ

ψ is uniquely defined ⇒ ℓ ∈ Z

C =
∮
v · ds = ℓ

h

M
, ℓ ∈ Z

the fluid rotates with a quantized circulation

Size of the hole: v > c for r < ℏ
mc =

√
2ξ

⇒ ∼healing length ξ

Kinetic energy of a vortex: Ekin ∝ ℓ2

Multiply charged vortices |ℓ| > 1 are unstable
⇒ Vortices arrange into an Abrikosov lattice

vortex wavefunction (modulus)

S. Huber’s course, ETHZ

r0
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BEC GPE Dynamics

Dynamics of the trapped Bose gas
Collective modes in a harmonic trap

Derivation of quantized, low energy modes in a trap (large scale). We start from the
hydrodynamics equations:

(1) ∂tn +∇ · (nv) = 0

(2) M∂tv = −∇
(
− ℏ2

2M

∆
(√

n
)

√
n

+
1

2
Mv2 + V (r) + gn − µ

)

Neglect quantum pressure

Linearize around the Thomas-Fermi solution n(r) = [µ− V (r)] /g , we get

∂2t δn = −ω2δn = ∇ ·
[
µ− V (r)

M
∇δn

]
= ∇ ·

[
c2(r)∇δn

]

3D spherical harmonic trap: V (r) = 1
2mω

2
0r

2. nr , ℓ, m quantum numbers:

δn(r) = P
(2nr )
ℓ (r/R)r ℓYℓm(θ, ϕ)

Get ω(nr , ℓ) = ω0

[
2n2r + 2nr ℓ+ 3nr + ℓ

]1/2
[Stringari, PRL 77, 2360 (1996)]
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BEC GPE Dynamics

Dynamics of the trapped Bose gas
Excitation spectrum and collective modes

Quantized excitation spectrum

Example for the isotropic 2D gas: nr , m are good quantum numbers:

ω(nr ,m) = ω0

[
2n2r + 2nr |m|+ 2nr + |m|

]1/2
[Stringari, PRA 58, 2385 (1998)]

Full spectrum:

nr = 0 branch
nr = 1

nr = 2

m

ω
ω0

1 -

m

ω
ω0

- dipole mode nr = 0,m = 1, both
superfluid and thermal: centre of mass
oscillation

red line: gives the critical velocity, related
to surface modes [Anglin, PRL 87, 240401

(2001)]
d

Ex: surface modes at the outer edge of an

annular Bose gas

[Dubessy et al., PRA 86, 011602 (2012)]

- monopole nr = 1,m = 0:
superfluid and thermal
signature of the EOS

- quadrupole nr = 0,m = ±2
superfluid only

- scissors for ωx ̸= ωy

superfluid only
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BEC GPE Dynamics

Dynamics of the trapped Bose gas
Excitation spectrum and collective modes
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(2001)]
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Ex: surface modes at the outer edge of an

annular Bose gas

[Dubessy et al., PRA 86, 011602 (2012)]

- monopole nr = 1,m = 0:
superfluid and thermal
signature of the EOS

- quadrupole nr = 0,m = ±2
superfluid only

- scissors for ωx ̸= ωy

superfluid only
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BEC GPE Dynamics

Signatures of superfluidty
(3) Specific collective modes

Specific modes of a superfluid gas: quadrupole mode, scissors mode: oscillation of
⟨xy⟩ ∝ θ in an anisotropic harmonic trap ωx ̸= ωy ⇒ Use the scissors mode to
characterize a superfluid dilute gas

T > Tc : no scissors mode in the thermal phase in the
collisionless regime, only beat notes of harmonic
modes ω± = ωx ± ωy

T < Tc : scissors mode expected at ωsc =
√
ω2
x + ω2

y

for a superfluid
Theory: Guéry-Odelin & Stringari, PRL 83, 4452 (1999);

Experiment: Maragò et al., PRL 84, 2056 (2000)
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BEC GPE Dynamics

Summary

BEC occurs below Tc (or above Nc) in a 3D box or in a harmonic trap in 2D or 3D

The dynamics of the condensate is captured in the mean-field regime by GPE or
the hydrodynamics equations

A weakly interacting BEC is a superfluid

Superfluidity should be probed dynamically

Signatures include critical velocity, vortices, collective modes

Next lecture: two-dimensional Bose gases and the BKT transition.
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