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Introduction Quasi LRO BKT Scaling

Outline of the course

Lecture 1: Bose-Einstein condensation, interactions and superfluidity

Lecture 2: Two-dimensional Bose gases at equilibrium

Lecture 3: Rotating two-dimensional Bose gases
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Introduction
The role of dimensionality in physics

Physics is qualitatively changed when dimension is reduced. Topology is not the same
as in 3D.
Examples include:

in 1D: absence of thermalisation of a 1D gas, ‘fermionization’ of an interacting
Bose gas, renormalization of the interactions, role of solitons...

in 2D: absence of long-range order, (fractional) quantum Hall effect,
Kosterlitz-Thouless transition, renormalization of the interactions, role of
vortices...
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Introduction
Example in 2D: the Quantum Hall Effect

2D electron gas at the interface of a semiconductor heterojunction

longitudinal current Ix , high perpendicular magnetic field Bz

measure the transverse voltage VH = Vy

plateaux of Hall resistance R =
Vy

Ix
= h

νe2
, ν ∈ N∗

longitudinal resistance Rx = Vx
Ix

= 0
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2D: A marginal dimension
Scaling symmetry, topology, quasi long-range order... and lots of logs

2D is a very special case!

Condensation and superfluidity
No BEC at T > 0 for the homogeneous ideal gas
BEC recovered in a trap
Interactions induce a quasi long-range order. . .
. . . and enable a transition to a superfluid state

Scaling invariance
(almost) no length scale, dimensionless interaction strength
Equation of states depending only on α = µ/kBT
Undamped monopole mode

Topology
Role of vortices in the superfluid transition
Analogy with Quantum Hall effect for the rotating gas
A KT(HNY) transition for the vortex lattice
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Production of 2D gases
General idea

Experimental realization of 2D gases: strongly confine the transverse direction
(kBT , µ ≪ ℏω⊥)

kBT , µ ≪ ℏω⊥

a
z xy
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Production of 2D gases
Optical lattices

Experimental realization of 2D gases: strongly confine the transverse direction
(kBT , µ ≪ ℏω⊥)

1 optical lattices along 1 axis

series of parallel 2D gases

Bloch, Nat. Phys. 1, 23 (2005)

Ville et al., PRA 95, 013632 (2017)

λ/4 waveplate

PBS

PBS

accordion lattice → single 2D gasHélène Perrin, LPL – Light and Cold Atoms 2025 2D quantum gases – Lecture 2
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Production of 2D gases
Optical lattices

Experimental realization of 2D gases: strongly confine the transverse direction
(kBT , µ ≪ ℏω⊥)

1 optical lattices along 1 axis

2 2D optical surface traps / rf-dressed magnetic traps

First 2D BEC in R. Grimm’s group
Rychtarik et al., PRL 92, 173003 (2004)

2D Bose gases in adiabatic
potentials @ LPL

Colombe et al., EPL 67, 593 (2004)

Merloti et al., NJP 15, 033007 (2013)
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Outline of the lecture

1 Introduction to 2D quantum gases

2 Quasi long-range order in 2D

3 The Berezinskii-Kosterlitz-Thouless mechanism

4 Scaling symmetry in 2D: monopole mode and equation of state
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The Berezinskii-Kosterlitz-Thouless mechanism
KT transition in the homogeneous two-dimensional Bose fluid

2D is a very special case! Logs and topological phase transitions

• 2D homogeneous case No long range order/BEC (Hohenberg–Mermin–Wagner
theorem), but a Kosterlitz–Thouless transition to a superfluid state below TBKT,
relying on vortex-antivortex pairing. Universal jump of the superfluid density.

VOLUME 40, NUMBER 26 PHYSICAL RKVIKW LKTTKRS 26 JUNE 1978
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FIG. 1. The shift in period, AP, and dissipation Q '
are shown as a function of temperature at the super-
Quid transition.
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porous Vycor glass, ' exhibit any excess dissipa-
tion associated with the superfluid transition.
The peak in dissipation in the present experiment
points to a fundamental difference between onset
phenomena in two- and three-dimensional super-
fluids.
The behavior in the two-dimensional fluid as

seen in our experiment can be understood in
terms of the dynamic theory of Ambegaokar,
Halperin, Nelson, and Siggia (AHNS). ' In their
theory, as well as in the calculation of Huberman,
Myerson, and Doniach, ' the dissipation is asso-
ciated with the diffusive motion of two-dimension-
al vortices driven by the oscillating superf low
The dynamic theory given by AHNS (Ref. 6) is

directly applicable to the data in the high-fre-
quency regime of the present experiment.
In these experiments we have varied the oscilla-

tor amplitude by a factor greater than 100. At
low amplitudes, where the superfluid velocity is
less than 10 ' cm/sec, we find that the period
and Q ' are amplitude independent, while at larg-
er velocities nonlinear effects set in, the transi-
tion region and dissipation peak are broadened.
In Fig. 2, we display, on an expanded tempera-

ture scale, a set of low-amplitude data obtained
in the neighborhood of the transition. The solid
curves drawn through the data represent a fit'
of the AHNS theory to these data. The gross fea-
tures of the curves are controlled by the choice
for the transition temperature, T„and the value
for the jump in the superfluid mass per unit area,

FIG. 2. The reduced period shift, 26P/P, and dis-
sipation Q are shown for a superQuid transition tem-
perature of 1.215 K. The solid lines are fits using the
dynamic theory of AHNS (Ref. 6) and the dashed curve
is the result of the static theory.

p, (T, ), at T, . These quantities appear in the
expression for the superfluid density near the
transition given by Kosterlitz and Thouless for
the static film:

The quantity, b, in Eq. (1) determines the strength
of the square-root cusp in the static theory. The
curves marked dynamic theory in Fig. 2 are
based on the linear-response calculation described
in Ref. 6. In brief, the reduced shift in period,
2~/P, and the superfluid dissipation Q ' are
related to a frequency-dependent dielectric con-
stant & by

2aP/P=(A/M)p, (T, ) Re(e ')
and

The real part of e is taken as due to bound pairs
according to Eq. (9a) of AHNS. It is calculated
by a numerical integration of the Kosterlitz re-
cursion relations. 4 For the imaginary part of e
contributions due to bound pairs, free vortices,
and a constant background (to account for the dis-
sipation remaining well below the transition) are
added together. In addition to the three param-

1728

−→

Bishop and Reppy,
PRL 40, 1727 (1978)

[ENS-CdF, NIST, Chicago, Palaiseau, Seoul, Cambridge, Villetaneuse, Oxford...]

2016 Nobel prize in physics to Haldane, Kosterlitz and Thouless
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The two-dimensional Bose gas
2D: A marginal dimension

• trapped gas V (r):

BEC recovered in a harmonic trap (finite size helps)

BKT still relevant within local density approximation (LDA).

replace
µ by µloc(r) = µ0 − V (r),
α = µ

kBT
by αloc(r) = α0 − V (r)/kBT

μ�

�(�)

μ���(�)

�

BKT superfluid phase within LDA

20

ncλ
2

0
rcβ

1/2 10

n
(r

)λ
2 , ρ

s(
r)

λ
2  

rβ1/2

SF jump

Holzmann & Krauth, PRL 100, 190402 (2008)

Hélène Perrin, LPL – Light and Cold Atoms 2025 2D quantum gases – Lecture 2



Introduction Quasi LRO BKT Scaling

The Berezinskii-Kosterlitz-Thouless mechanism
ENS experiment: observation of the transition and correlation function

ENS experiment: measure G1(x) decay by interferometry

low T
phase fluc.

L

vortex

measurement of the integrated contrast:

1

L

∫ L/2

−L/2
|G1(x)|2 dx ∝ 1

L2α

exponential decay: α = 1
2

algebraic decay: α = 1
4

statistics on phase defects (free vortices)
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The Berezinskii-Kosterlitz-Thouless mechanism
ENS experiment: observation of the transition and correlation function

Results: Hadzibabic et al., Nature 441, 1118 (2006)
Fraction of pictures with vortices

contrast c0
contrast c0 is a measure of temperature

BKT transition evidenced by a step in exponent α and apparition of vortices
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The Berezinskii-Kosterlitz-Thouless mechanism
Oxford experiment: decay of correlation function and vortices

Chris Foot’s group, Sunami et al., PRL 128, 250402 (2022)

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

(a) prepare two parallel 2D quantum gases, release and select a slice around y = 0

(a) recover the local phase at each x from the fringes observed in time-of-flight

(b) compute the (x , x ′) correlation, (c) plot as a function of distance |x − x ′|
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The Berezinskii-Kosterlitz-Thouless mechanism
Oxford experiment: decay of correlation function and vortices

Chris Foot’s group, Sunami et al., PRL 128, 250402 (2022)

fit C(x) ∝ 1/L2η

exponent η

vortex probability Pv

Recover the main features, more quantitative comparison to Monte-Carlo calculations.
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The Berezinskii-Kosterlitz-Thouless mechanism
Seoul experiment: pairing of vortices

Yong-il Shin’s group, Choi et al., PRL 110, 175302 (2013)
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The Berezinskii-Kosterlitz-Thouless mechanism
Seoul experiment: pairing of vortices
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KT transition in the homogeneous 2D Bose gas
The Cambridge experiment: superfluid jump observed from first and second sound

2D homogeneous 39K gas, g̃ = 0.64

Shake the gas along y axis, record

center-of-mass motion
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2
dB = 4 jump at the transition [Christodolou et al., Nature 594, 191 (2021)]
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Summary: BEC vs BKT in the two-dimensional Bose gas

BEC or BKT depends on trapping and interactions

Summary:
ideal interacting

homogeneous no BEC, no SF BKT SF [ENS-CdF]

trapped BEC, no SF BEC + BKT within LDA

BEC-BKT interplay in a harmonic trap
Fletcher et al., PRL 114, 255302 (2015)

0 . 0 0 . 1 0 . 2 0 . 3 0 . 4 0 . 50

1

2

 g

 B K T
 B E C

 N c/N
0 c
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2D: A marginal dimension
Scaling symmetry and monopole mode of the 2D Bose gas

2D is a very special case! Scaling symmetry:

scaling invariance r → λr : EK → 1
λ2EK , Eint → 1

λ2Eint

(almost) no length scale: dimensionless interaction strength g̃ : g2D = ℏ2
M g̃

Pitaevskii-Rosch monopole mode in an isotropic 2D harmonic trap:

- no damping [Chevy et al., PRL 88, 250402 (2002), in a cigar]

- monopole probes the compressibility ⇒ ΩM is related to the 2D EOS µ(n):
ΩM =

√
2(2 + ϵ)ω with ϵ = nµ′′(n)/µ′(n)

- 3D oblate: µ(n2D) ∝ n
2/3
2D ⇒ ΩM =

√
10
3 ω for small amplitudes

- strict 2D: µ(n) = g2Dn ⇒ ΩM = 2ω for all amplitudes, linked to scaling
symmetry

- effect of transverse confinement: Quantum anomaly: expected positive shift
of ΩM at the 0.5% level [Olshanii et al., PRL 105, 095302 (2010)]
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2D: A marginal dimension
Scaling symmetry and monopole mode of the 2D Bose gas

Experiment: Karina Merloti (LPL) [thesis, NPJ 15, 033007 & PRA 88, 061603(R) (2013)]

no visible damping Frequency sensitive to the EOS.
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Observe a shift due to the interactions and progressive occupation of transverse modes

as µ increases ⇒ transition from ΩB = 2ωr (2D) to ΩB =
√

10
3 ωr (3D oblate).
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Scaling symmetry and universality
Equation of state

2D is a very special case! Logs and topological phase transitions

• Scaling symmetry and universality

kinetic energy ∝ k2, interactions ∝ 1/r2,
integrand k dk ⇒ critical dimension with
Log divergences

no length scale: dimensionless interaction
strength g = ℏ2

M g̃

EOS depends only on α = µ/kBT :
D = f (α, g̃) [ENS,Chicago]

g̃ ≃ 0.1: critical psd for BKT Dc ≃ 8,
critical αc ≃ 0.16

d
en
si
ty

in
µ
m

−
2

density n

r in µm

psd D

µ/kBT

picture from T. Yefsah’s PhD thesis

[Yefsah et al., PRL 107, 130401 (2011)]
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Scaling symmetry and universality
Equation of state

2D is a very special case! Logs and topological phase transitions

• Scaling symmetry and universality

kinetic energy ∝ k2, interactions ∝ 1/r2,
integrand k dk ⇒ critical dimension with
Log divergences

no length scale: dimensionless interaction
strength g = ℏ2

M g̃

EOS depends only on α = µ/kBT :
D = f (α, g̃) [ENS,Chicago]

large g̃ : universal law near Dc

D − Dc = f

(
1

g̃

[
µ

kBT
−
(

µ

kBT

)
c

])

psd D
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= (α − αc )/g̃

[Chin group, Nature 470, 236 (2011)

& PRL 110, 145302 (2013)]
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