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1. Semiclassical Model

1.1. Classical formalism for charges interacting with

electromagnetic fields

The classical Hamiltonian for an electrical charge q of position r, conjugate Hamilton
momentum p and mass m is given by

H =
1

2m
(p− qA(r))2 + qϕ(r) . (1)

In the equation above, ϕ(r) is the scalar potential and A(r) is the vector potential
of the electromagnetic radiation. The electromagnetic fields are related to them via

E(r, t) = −∇ϕ(r, t)− ∂A(r, t)

∂t
, (2)

B(r, t) = ∇×A(r, t) . (3)

In eq. (1), the potentials are not dynamical variables; the only dynamical variables
are the position and momentum of the particle. We can obtain the classical equations of
motion for them within the Hamilton formalism:

dxj
dt

=
∂H
∂pj

=
pj − qAj(r)

m
, (4)

dpj
dt

= −∂H
∂xj

=
q

m
(p− qA(r)) · ∂A

∂xj
− q

∂ϕ

∂xj
, (5)

with j ∈ {1, 2, 3} and xj (resp. pj) the components of the position vector r (resp. p) in
each direction of space. The first equation states that the relation between the speed and
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the conjugate momentum is different from the usual:

v =
dr

dt
=

p− qA(r)

m
. (6)

This shows that the Hamiltonian above is actually just what we expect,

H =
mv2

2
+ qϕ(r) . (7)

To obtain the force acting of the particle, we can derive again the equation above.
Writing the equation for each coordinate, we get

Fj = m
dvj
dt

=
dpj
dt

− q
d

dt
Aj(r, t)

=
q

m
(p− qA(r)) · ∂A

∂xj
− q

∂ϕ

∂xj
− q∇Aj ·

dr

dt
− q

∂Aj
∂t

= q

(
− ∂ϕ

∂xj
− ∂Aj

∂t

)
+ q

(
v · ∂A

∂xj
− (v ·∇)Aj

)
. (8)

In the first term of the last line, we recognize the j component of the electric field;
The second term can be shown to be

v · ∂A
∂xj

− (v ·∇)Aj = (v × (∇×A))j , (9)

and we finally find the Lorentz force

F = m
dv

dt
= qE+ qv ×B . (10)

1.2. A quantum charge interacting with classical light

We can quantize the degrees of freedom of the charge (its position and momentum).
This is done via the canonical quantization

r → r̂ (11)

p → p̂ (12)

Accordingly, the new Hamiltonian becomes the operator

Ĥ =
1

2m
(p̂− qA(r̂))2 + qϕ(r̂) . (13)

As usually in Quantum Mechanics, the momentum operator is represented as p̂ =

−iℏ∇ in the space representation, in order to conserve the canonical commutation relation
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[xj, pl] = iℏδjl . (14)

On the other hand, the velocity operator must be quantized from Eq. (6), and
becomes

v̂ =
p̂− qA(r̂)

m
, (15)

such as

Ĥ =
m

2
v̂2 + qϕ(r̂) . (16)

It is instructive to calculate the average force felt by the charge. For that, we will
use Ehrenfest’s theorem:

d⟨v⟩
dt

=
1

iℏ
[v̂, Ĥ] + ⟨∂v

∂t
⟩ (17)

This is a long calculation. Some intermediate steps are outlined below:

• [v̂x, v̂y] = (−q/m2)[p̂x,Ay(r)] + (q/m2)[p̂y,Ax(r)]

• [p̂x,Ay(r)]ψ = −iℏ∂Ay

∂x
ψ → [v̂x, v̂y] =

iℏq
m2

Bz(r̂)

• [v̂x, v̂
2
y] =

iℏq
m2

(v̂yBz(r̂) +Bz(r̂)v̂y) → [v̂x,mv̂
2/2] =

iℏq
2m

(v̂ ×B(r)−B(r)× v̂)x

• [v̂x, qϕ(r̂)] = −iℏqdϕ(r̂)
dx

• ⟨∂v
∂t

⟩ = ⟨ q
m

∂Ax

∂t
⟩

Plugging all the results into 17, we get the quantum analog of the Lorentz
force, applied to the average value of the velocity operator:

m
d⟨v̂⟩
dt

= q⟨E(r̂)⟩+ q

2
⟨v̂ ×B(r̂)−B(r̂)× v̂⟩ . (18)

We note that the symmetrized version of v̂ ×B(r̂) appears at the force expression.
This is ubiquitous in the canonical quantization: Only symmetrized versions of operators
which are function of both r̂ and p̂ are observables.

1.3. A quantum atom interacting with a classical plane

wave

We will now use those results to describe a Hydrogen atom interacting with incoming
light. This atom will have a positive nucleus, and an electron in the valence shell orbiting
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it, of charge q = −e, with e = +1, 602 176 634.10−19C the modulus of the elementary
charge. The charge we described in the previous subsection is now just the electron
orbiting around the positive core. The degrees of freedom of the electronic structure of
the atom are called the internal degrees of freedom of the atom, and this is what interest
us now. We will not include as a degree of freedom here the center of mass of the atom
(the external degrees of freedom of the atom); we will treat the consequences to those
degrees of freedom in a next section.

Given an incident plane wave with a wavevector k, we can write the electric and
magnetic fields:

E = E0 cos (k · r− ωt) , (19)

B =
k× E

ω
. (20)

We must also have E0 ·k = 0. We will place ourselves now in the Coulomb gauge,
and choose a scalar and vector potentials that satisfy ∇ ·A = 0. In this gauge, we write
A = A⊥. We have

A = A⊥(r, t) =
E0

ω
sin (k · r− ωt) , (21)

ϕ(r, t) = 0 (22)

We must also include in the scalar potential the Coulomb interaction potential with
the positive nucleus. The Hamiltonian becomes

Ĥ =
1

2m
(p̂− qA⊥(r̂))

2 + VCoul(r̂) =
p̂2

2m
+ VCoul(r̂)︸ ︷︷ ︸

Ĥ0

− q

m
p̂ ·A⊥(r̂)︸ ︷︷ ︸
ĤI1

+
q2

2m
A⊥

2(r̂)︸ ︷︷ ︸
ĤI2

(23)

with

VCoul(r̂) = − e2

4πε0r̂
. (24)

For deducing the Hamiltonian above, we used the fact that, in Coulomb gauge,

p̂ ·A⊥(r̂) = A⊥(r̂) · p̂− iℏ∇ ·A⊥ = A⊥(r̂) · p̂ . (25)

We can separate the Hamiltonian of Eq. (23) in three main terms. First,

Ĥ0 =
p̂2

2m
+ VCoul(r̂) (26)
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is the Hamiltonian of the Hydrogen atom. Then we have the two last terms of Eq. (23),
respectively ĤI1 and ĤI2, that correspond together to the Hamiltonian of interaction of
the atom with light, ĤI = ĤI1 + ĤI2.

1.3.1. Quick reminder of the Hydrogen atom model

The eigenstates of the Hydrogen atom are parametrized as |n, ℓ,ml⟩, such as the
action of the operators Ĥ0, the squared modulus of the angular momentum L̂2 and the
z-component of the angular momentum L̂z are simply

• Ĥ0|n, ℓ,mℓ⟩ =
E1

n2
, n ∈ N∗, withE1 =

me4

32π2ϵ20ℏ2
;

• L̂2|n, ℓ,mℓ⟩ = ℓ(ℓ+ 1)ℏ2|n, ℓ,mℓ⟩, ℓ ∈ N, ℓ ≤ n− 1;

• L̂z|n, ℓ,mℓ⟩ = mℓℏ |n, ℓ,mℓ⟩, mℓ ∈ Z, |mℓ| ≤ ℓ.

In the position representation, the eigenstates of the Hydrogen atom corresponds to
the following wavefunctions:

⟨r|n, ℓ,mℓ⟩ = ψn,ℓ,mℓ
(r, θ, φ) = Rnℓ(r)Y

mℓ
ℓ (θ, φ) . (27)

The radial function Rnℓ(r) is given by

Rnℓ(r) =

√(
2

na0

)3
(n− ℓ− 1)!

2n(n+ ℓ)!
e
− r
na0 ρℓ L2ℓ+1

n−ℓ−1

(
2r

na0

)
. (28)

In the expression above, a0 = 4πϵ0ℏ2
me2

is the Bohr radius, the typical length scale of
the electronic orbitals, and Lj2j1 is the generalized Laguerre polynomial, defined by

Lj2j1(ξ) =
ξ−j2

j1!

(
d

dξ
− 1

)j1
ξj1+j2 . (29)

The angular function Y mℓ
ℓ (θ, φ) is the spherical harmonic,

Y m
ℓ (θ, φ) =

√
(2ℓ+ 1)

4π

(ℓ−m)!

(ℓ+m)!
Pm
ℓ (cos θ) eimφ (30)

with the definition of the associated Legendre polynomials

Pm
ℓ (ξ) =

1

2ℓℓ!
(1− ξ2)m/2

dℓ+m

dξℓ+m
(ξ2 − 1)ℓ . (31)

1.3.2. The A · p interaction Hamiltonian

The other two terms of the Hamiltonian, HI = HI1 +HI2, describe the interaction
between the atom and the incident electric field in Coulomb’s gauge. Those terms describe
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how the impinging light causes electronic transitions, ionization, and energy shifts. In full
generality, they are difficult to handle; but we can in most cases expand their effect in
a way analogous to the multipolar expansion of the classical interaction between electric
charges and electromagnetic fields.

Considering the typical size of electronic orbitals as being the Bohr radius, and
comparing it to the wavelength of visible light (which sets the typical spatial scale of
variation of the electromagnetic fields), a0/λ0 ∼ 10−4, so k · r̂ ≲ 10−3. This means that it
is fair enough to consider that the whole electronic orbital interacts with the same electric
field. If the center of mass of the atom is in position R, and taking at first R at the
origin, R = 0, we can make the approximation A⊥(r̂) ≈ A⊥(0) = −E0/ω sin (ωt). This is
called the long wavelength approximation. With this, the term HI2 becomes simply
a global energy shift, without physical consequence; and the interaction term HI = HI1

becomes

HI =
−q
m

(A⊥(0) · p̂) sinωt =
e

mω
(E0 · p̂) sinωt . (32)

This is called A.p Hamiltonian. This form of the interaction Hamiltonian is
particularly suitable to numerically calculate atomic ionization rates under intense elec-
tromagnetic fields. However, for treating the excitation of an atom to low-lying electronic
states, it is more common to work with a different form of the interaction Hamiltonian,
that we will deduce below.

1.3.3. The electric dipolar interaction Hamiltonian

The first thing we will need to do is to perform a gauge transformation on the
electromagnetic potentials, to the Göppert Mayer gauge.

A change in gauge is described by the transformation (A, ϕ) → (A′, ϕ′), keeping the
electromagnetic fields unchanged, through{

A′ = A+ ∇⃗ · f
ϕ′ = ϕ− ∂f

∂t

(33)

for any f(r, t. To find the potentials in the gauge of Göppert Mayer, we let f(r, t) =

−r ·A⊥(0, t). In this gauge, the new potentials are written as

A′(r, t) = A⊥(r, t)−A⊥(0, t) , (34)

ϕ′(r, t) = ϕ(r, t) + r · ∂A⊥(0, t)

∂t
. (35)

With these new potentials, the Hamiltonian of Eq. (13) becomes
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Ĥ =
1

2m
(p̂− qA′(r̂, t))2 + Vcoulomb(r̂) + qr̂ · ∂A⊥(0, t)

∂t
. (36)

Now, if we again perform the long wavelength approximation,

A′(r, t) ≃ A′(0, t) = A⊥(0, t)−A⊥(0, t) = 0 ; (37)

E(r, t) ≃ E(0, t) = − ∂A′(r, t)

∂t

∣∣∣∣
r=0

= − ∂A⊥(r, t)

∂t

∣∣∣∣
r=0

= −∂A⊥(0, t)

∂t
. (38)

We also define d̂ = qr̂ = −er̂ the electric dipole moment of the atom, and we finally
get

Ĥ =
p̂2

2m
+ Vcoulomb − d̂ · E(0, t) = Ĥ0 + ĤId , (39)

with the interaction term in this gauge and in the long wavelength approximation given
by ĤI ≃ ĤId, the Dipolar interaction Hamiltonian,

ĤId = −d̂ · E(0, t) . (40)

If the center of mass of the atom is at any position R, we write instead

ĤId = −d̂ · E(R, t) . (41)

It is important to note that the electric field in the dipolar approximation is taken
at the center of mass of the atom; as such, it is no longer an operator. The only operator
at ĤId is the electric dipole d̂. Interestingly, in the Göppert Mayer gauge and within the
long wavelength approximation, by use of Eq. (37) we have

v̂ =
p̂− qA′(r̂, t)

m
≃ p̂

m
; (42)

i.e., in the electric dipolar approximation, we recover the simple relation between the
velocity and the momentum operator.

A final comment on the two different forms of the interaction Hamiltonian that
we have found, the A · p and the d · E: It can be surprising that a change in gauge
created different Hamiltonians, since electromagnetism should be gauge-invariant (and it
is). What happens here is that, since we have made the long wavelength approximation
after the change of gauge, those Hamiltonians agree only to order 0 in a0/λ - which is
precisely the order of precision of what is obtained when we perform the long wavelength
approximation. This is why it can be important to choose a proper form for the interaction
Hamiltonian when treating specific physical situations. In what follows, we will use the
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electric dipolar form.

1.4. The electric dipole operator

The interaction Hamiltonian in the electric dipolar approximation, ĤId, is not diag-
onal in the basis of the eigenstates of the Hamiltonian Ĥ0 of the Hydrogen atom. In first
order, the interaction term can cause transitions from a level |n, ℓ,mℓ⟩ to another level
|n, ℓ′,m′

ℓ⟩ whenever the off-diagonal matrix element

⟨n′, ℓ′,m′
ℓ|ĤId|n, ℓ,mℓ⟩ (43)

is not zero. But we will see that most of those non-diagonal matrix elements are actually
zero: This implies that there are only a few electronic transitions allowed by the electric
dipolar in first order: Those that respect the selection rules. We will deduce the selection
rules after discussing the impact of the dipolar coupling in more general terms. But before
we proceed, let us just deduce the fact that the diagonal elements of the electric dipolar
operator are all zero. The diagonal elements of the electric dipolar operator are of the
form

⟨n, ℓ,mℓ|ĤId|n, ℓ,mℓ⟩ . (44)

The diagonal terms will change the energy of the electronic level in first order, with
respect to the unperturbed energy of the Harmonic oscillator. We can cast the matrix
element above as an integral,

⟨n, ℓ,mℓ|ĤId|n, ℓ,mℓ⟩ = ⟨n, ℓ,mℓ| (er̂ · E(R, t)) |n, ℓ,mℓ⟩ =

e⟨n, ℓ,mℓ|r̂(R, t)|n, ℓ,mℓ⟩ · E(R, t) = e

[ˆ
R3

d3r
∣∣ψ∗

n,ℓ,mℓ
(r)
∣∣2 r

]
· E(R, t) . (45)

Each eigenstate ψn,ℓ,mℓ
(r) is proportional to the spherical harmonic Y mℓ

ℓ , which is
in turn a polynomial of order ℓ on the normalized coordinates x/r, y/r and z/r. This
means that each eigenstate has definite parity: ψn,ℓ,mℓ

(−r) = (−1)ℓψn,ℓ,mℓ
(r), and then∣∣ψ∗

n,ℓ,mℓ
(−r)

∣∣2 = ∣∣ψ∗
n,ℓ,mℓ

(r)
∣∣2: The squared modulus of the eigenstates is an even function.

This, in turn, implies that the ri component of the integrand is of the form
∣∣ψ∗

n,ℓ,mℓ
(r)
∣∣2 ri,

with r = (r1, r2, r3) = (x, y, z). Those integrands are odd, whose integral over all R3 is
equal to zero:

⟨n, ℓ,mℓ|ĤId|n, ℓ,mℓ⟩ = 0 . (46)

The dipolar operator on the basis of the eigenstates of the free Hydrogen atom is



1.4 The electric dipole operator 8

thus purely non-diagonal. In what follows, we will operate a very strong simplification
of the model we are developing. We will consider that the atom is initially found in the
electronic level |g⟩, which is an eigenstate of H0, and is coupled to another bare eigenstate
|e⟩ by the electric dipolar matrix:

⟨g|d̂|e⟩ = d , (47)

and the dipolar Hamiltonian matrix element is

⟨g|ĤId|e⟩ = −d · E(R, t) . (48)

For a classical charge distribution with no net dipole prior to the action of the
external electric field, the electric dipole is in the direction of the electric field. In our
semiclassical model, the same will happen, but we will only be able to fully verify it
afterwards (see the discussion on selection rules at the end of this section). So, by now,
we will accept the fact that the electric dipole induced by the incident electric field is in
the same direction as the electric field. If |d| = d ∈ R (we can always make it real by a
proper choice of the phases of the eigenstates) and |E(R, t)| = E(R, t), we write

⟨g|ĤId|e⟩ = −dE(R, t) = −dE0 cos(k ·R− ω0t) = ℏΩ0 cos(k ·R− ω0t) , (49)

with Ω0 = −dE0/ℏ ∈ R the Rabi frequency of the coupling between light and the
electronic transition. We obtain the total hermitian electric dipolar Hamiltonian as

ĤId = ℏΩ0 cos (k ·R− ωt) (|g⟩⟨e|+ |e⟩⟨g|) . (50)

If we consider the eigenstate |e⟩ to be of higher energy than |g⟩, and suppose the
energy of |g⟩ to be zero, then we write ⟨e|H0|e⟩ = Ee = ℏω0, and the Hamiltonian H0

reduced to those two-levels can be written as H0 = ℏω0|e⟩⟨e|. The total Hamiltonian in
the base |g⟩, |e⟩ is written

H = ℏ

[
0 Ω0 cos (ϕL(R)− ωt)

Ω0 cos (ϕL(R)− ωt) ω0

]
. (51)

In the equation above, we have replaced k ·R = ϕL(R), the spatial phase of light.

Before we move to the discussion of the dynamics entailed by this Hamiltonian, it
is instructive to define the raising σ̂+ and lowering σ̂− operators for this two-level system:
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σ̂− = |g⟩⟨e| (52)

σ̂+ = (σ̂−)
† = |e⟩⟨g| (53)

The names of the operators come from their action on the internal state of the
atom: The raising operator acts in the fundamental state as σ̂+|g⟩ → |e⟩, while the
lowering operator acts in the excited state as σ̂−|e⟩ → |g⟩. The electric dipole operator
can be written as a function of those operators as

d̂ = d (σ̂+ + σ̂−) , (54)

and the interaction Hamiltonian becomes

ĤId = ℏΩ0 cos (ϕL(R)− ωt) (σ̂+ + σ̂−) . (55)

Is it valid to reduce the total atom to this two-level system? For several situations,
yes, but we will be able to discuss it fully after deducing the consequences of this simple
model. So, let us do the math!

2. Rabi oscillations and Bloch optical equations

2.1. Coherent Rabi oscillations

In this section, we will keep the center of mass of the atom in the origin of the
coordinate system, that is, R = 0, which makes ϕL(R) = 0. The Schrödinger equation
applied to the general state |ψ⟩ = cg(t)|g⟩+ ce(t)|e⟩ in the two-level approximation, with
|cg|2 + |ce|2 = 1, is written as (using cosωt = (eiωt + e−iωt) /2)

iℏ
d

dt

(
cg

ce

)
= ℏ

[
0 Ω0

2
(eiωt + e−iωt)

Ω0

2
(eiωt + e−iωt) ω0

](
cg

ce

)
. (56)

This gives two coupled equations:
dcg
dt

= −iΩ0

2
{eiωt + e−iωt} ce

dce
dt

= −iΩ0

2
{eiωt + e+iωt} cg − iω0ce

. (57)

2.1.1. Rotating Wave Approximation (RWA)

Some terms of the equation above are highly non-resonant. Intending to highlight
them, let’s make a change of reference frame. Let’s write our wavefunction as:
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|ψ⟩ = cg(t)|g⟩ + e−iωtc′e(t)|e⟩ , (58)

by doing the transformation c′e = ce e
iωt. The equations become

now, we say that we are put in the rotating frame with frequency ω of the incident
light. The previous equations become

dcg
dt

= −iΩ0

2
{1 + e−2iωt} ce

dc′e
dt

= −iΩ0

2
{1 + e+2iωt} cg + i(ω − ω0)c

′
e

(59)

If the light detuning ∆ = ω − ω0 satisfies |∆| ≪ ω, ω0, then the terms e±2iωt are
clearly much faster than the other frequencies of the system, Ω0 and ∆. Then, we can
substitute these exponentials by their time-averaged value: e−2iωt → ⟨e−2iωt⟩ = 0, e2iωt →
⟨e2iωt⟩ = 0. This approximation is known as the Rotating Wave Approximation. Finally,
this allow us to write the coupled equations in a simpler and nicer form:

d

dt

(
cg

c′e

)
=

 0 −iΩ0

2

−iΩ0

2
i∆

(cg
c′e

)
(60)

which configures a first order set of linear and homogeneous ODE’s in the form

d

dt

(
cg

c′e

)
= M̂

(
cg

c′e

)
. (61)

The eigenvalues of M̂ are:

λ± =
i[∆± Ω]

2
; Ω =

√
∆2 + |Ω0|2 . (62)

Considering the time evolution of the eigenvectors, the eigenvalues must satisfy
|ψ(t)⟩ = a+ exp (λ+t) + a− exp (λ−t). Therefore{

cg(t) = Aeλ+t +Beλ−t

c′e(t) = Ceλ+t +Deλ−t
(63)

If the atomic initial state is the ground state, then |ψ⟩(0) = |g⟩, and we get{
A+B = 1

C +D = 0
(64)

We get
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cg(t) = Ae(λ+t) + (1− A)eλ−t = ei∆t/2
[
cos

Ωt

2
+ i(2A− 1) sin

Ωt

2

]
(65)

c′e(t) = C
(
eλ+t − eλ−t

)
= 2iC ei∆t/2 sin

Ωt

2
(66)

(67)

The temporal evolution in Eq. (60) gives two relations between A and C:

λ+A = −iΩ0

2
C (68)

λ−(1− A) = +i
Ω0

2
C (69)

Solving both, we find

A =
Ω−∆

2∆
(70)

C = −Ω0

2Ω
(71)

Finally, the state in a time t and in the rotating light wave (of frequency ω) reference
frame is given by:

|ψ(t)⟩ = ei∆t/2
[(

cos

(
Ωt

2

)
+
i∆

Ω
sin

(
Ωt

2

))
|g⟩ − iΩ0

Ω
sin

(
Ωt

2

)
|e⟩
]
. (72)

We find that the ground and excited states are coupled by light and are not station-
ary states of the system. The excited state population is

Pe = |ce|2 =
Ω2

0

Ω2
0 +∆2

sin2

(
Ωt

2

)
. (73)

From the sinusoidal behavior of the excited population comes the name "Rabi Os-
cillations". Using the concepts shown, we can use them to manipulate the atomic system.
There are two kinds of light pulses that are extremely useful and very famous:

• π pulse: Resonant excitation (∆ = 0) with a pulse duration ∆t = π/Ω0. This
changes the state of the system, |g⟩ → |e⟩.

• π/2 pulse: Resonant excitation, ∆t = π/(2Ω0). If |ψ(0)⟩ = |g⟩, then |ψ(t =

π/2Ω0)⟩ =
|g⟩ − i|e⟩√

2
, which is a coherent superposition of the ground and excited

states.
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2.1.2. Bloch Sphere

The most general state of a two-level system can be written as:

|ψ⟩ = cos

(
θ

2

)
|g⟩+ eiφ sin

(
θ

2

)
|e⟩ (74)

We are not considering here a global phase; this do not change the physical properties
of the system that we are concerned in this context. It is possible to make a bijection
between the state and points of a sphere:

Figure 1: Bloch Sphere Representation.

In this representation, a Rabi oscillation is just a rotation around an axis of the
sphere.

2.2. Including spontaneous emission: Optical Bloch equa-

tions

At this point, we want to add an important phenomena concerning the atomic system
dynamics: spontaneous decay of the excited state. It is an incoherent process that occurs
with random timing. This process will increase the entropy of our system, inducing loss
of information and irreversibility. The state of the system will not be described anymore
by a pure state represented by a ket |ψ(t)⟩. We will need a generalized representation
of the state of a system, called density matrix, which can account for states which are
statistical mixtures of pure states.
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2.2.1. The density matrix

For a physical system in a state |ψ⟩, the density matrix is defined as

ρ̂ = |ψ⟩⟨ψ| . (75)

For our 2-level system, the density matrix is a 2x2 matrix, which we write as

ρ̂ =

[
σgg σge

σeg σee

]
. (76)

From this density matrix, we can get an expression for the average value of an
operator:

〈
Â
〉
= Tr[ρ̂Â] . (77)

Indeed, if we write the state in the basis of the eigenvectors of Â, |ψ⟩ =
∑

i ci|Ai⟩,
where Â|Ai⟩ = Ai|Ai⟩, we get

Tr[ρ̂Â] = Tr[|ψ⟩⟨ψ|Â] = Tr

[(∑
i

ci|Ai⟩

)(∑
i

c∗i ⟨Ai|

)
Â

]

= Tr

[∑
i

Ai|ci|2|Ai⟩⟨Ai|

]
=
∑
i

Ai|ci|2 =
〈
Â
〉
. (78)

The main advantage of the density matrix formalism is that we can also represent
states with entropy, that is, with a lack of information on the exact state of the system.
As an example, let us suppose that of a physical system, we know that with probability
pj, it is found in state |ψj⟩. The probabilities must sum, of course,

∑
j pj = 1. Note that

these probabilities are different from the probabilistic outcomes of a measurement in a
quantum system, which are all contained in the state |ψ⟩ of the system. Here, we have a
classical lack of information about the system. Its density matrix will now be written

ρ̂ =
∑
j

pj|ψj⟩⟨ψj| . (79)

This state clearly represents a statistical mixture of states. To be convinced, we
note that any physical prediction on the system will be just a weighted combination of
the physical predictions on each state:

〈
Â
〉
= Tr[ρ̂Â] = Tr[

∑
j

pj|ψj⟩⟨ψj|Â] =
∑
j

pjTr[|ψj⟩⟨ψj|Â] =
∑
j

pj

〈
Â
〉
j
. (80)
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We see that the probabilistic outcomes add up without interference. This is another
signature of the incoherent combination of possible states of the system.

The temporal evolution of the density matrix is given by the von Neumann equation:

dρ̂

dt
=

1

iℏ
[Ĥ, ρ̂] . (81)

We can verify rightaway that, for a pure state where ρ̂ = |ψ⟩⟨ψ|, this equation
implies the Schrödinger equation for |ψ⟩.

The diagonal elements σgg and σee are called the populations. They give the
probability of finding the system in the state |g⟩ or |e⟩, respectively. Indeed, since the
probability of finding the state in |g⟩ is given by ⟨|g⟩⟨g|⟩,

Pg = ⟨|g⟩⟨g|⟩ = Tr[ρ̂|g⟩⟨g|] = σgg . (82)

The same can be verified for Pe = σee. This entails a general property of the density
matrix:

Tr[ρ̂] = 1 . (83)

For our two-level system, the equation above becomes

σgg + σee = 1 . (84)

The nondiagonal elements are called coherences. They measure the degree of
coherence of the superposition of states represented by the density matrix. The closer
to zero, the more incoherent is the superposition. For a pure state |ψ⟩ = cg|g⟩ + ce|e⟩,
σgg = |cg|2; σee = |ce|2; σge = cgc

∗
e; σeg = σ∗

ge. In general, the definition of the density
matrix of Eq. (79) shows that ρ̂† = ρ̂; for our two-level system,

σeg = σ∗
ge (85)

even when the state is in a statistical mixture.

2.2.2. Temporal evolution of the density matrix. The

optical Bloch equations

We can use the von Neumann equation and the Hamiltonian of Eq. (51) to obtain
the temporal evolution of the coefficients of the density matrix
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dσge

dt
= −iΩ0

2

(
e−i(ϕL(R)−ωt) + ei(ϕL(R)−ωt)) (σee − σgg) + iω0σge (86a)

dσee

dt
= −iΩ0

2

(
e−i(ϕL(R)−ωt) + ei(ϕL(R)−ωt)) (σge − σeg) (86b)

Due to the relation between the coefficients of the density matrix, we can write the
other equations as a function of those two: dσeg

dt
=
(

dσge
dt

)∗
, dσgg

dt
= −dσee

dt
.

Those equations must reproduce the same results as what was found in the previous
section. But now, we can also add the effect of the spontaneous emission. In order to
deduce the effect of spontaneous emission, we must make full model where the light is
also quantized, which is beyond this description. You will thus trust me on what I will
say next.

Essentially, spontaneous emission causes 2 effects: loss of excited population and loss
of coherence. The loss of excited population is described by a decay rate independent of
time, which is described by an additional decay term in the equation for the time derivative
of the excited population, of the form

(
dσee
dt

)
sp
− Γσee. At the same time, the coherences

will also decay, but with a different rate, which we call γ, such that
(

dσge
dt

)
sp
−γσge. With

a full quantum model, one can show that the rate of coherence loss due to spontaneous
emission is γsp = Γ/2. Other effects, such as atomic collisions, magnetic field fluctuations
or inhomogeneities, can increase γ, such as in general we have γ ≥ Γ/2. The full evolution
equations, including spontaneous decay and other dephasing mechanisms, are written as

dσge

dt
= −iΩ0

2

(
e−i(ϕL(R)−ωt) + ei(ϕL(R)−ωt)) (σee − σgg) + iω0σge − γ σge (87a)

dσee

dt
= −iΩ0

2

(
e−i(ϕL(R)−ωt) + ei(ϕL(R)−ωt)) (σge − σeg)−Γσee (87b)

2.2.3. Rotating wave approximation

Just as in the coherent case, we put ourselves in the light rotating reference frame,
pursuing the identification of the non-resonant terms. Doing the following transformation:{

σge → σ′
ge = e−iωtσge

σeg → σ′
eg = e+iωtσeg

(88)

we obtain the new equations

dσ′
ge

dt
= −iΩ0

2

(
e−i(ϕL(R)−ωt) + ei(ϕL(R)−ωt)) (σee − σgg) e

−iωt + i(ω0 − ω)σge′ − γ σge

dσee

dt
= −iΩ0

2

(
e−i(ϕL(R)−ωt) + ei(ϕL(R)−ωt)) (eiωtσ′

ge − e−iωtσ′
eg) − Γσee
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Doing the RWA after this modification: e±2iωt ≈ ⟨e±2iωt⟩ = 0 , we get the so-called
Bloch Optical Equations:

dσ′
ge

dt
= −iΩ0

2
e−iϕL(R) (σee − σgg) − (i∆+ γ)σ′

ge

dσee

dt
= −iΩ0

2

(
eiϕL(R) σ′

ge − e−iϕL(R) σ′
eg

)
− Γσ′

ee

(89)

In the absence of other forms of dephasing, γ = Γ/2. Notice that
dσgg

dt
= −dσee

dt
,

also
(dσge

dt

)
=
(dσeg

dt

)∗.
2.2.4. Evolution in absence of laser excitation

The set of equations above depends on 4 frequencies (Ω0, Γ, ω, γ), so one can imag-
ine how messy the general solution is. Although, a notable case is an isolated atom
(Ω0 = 0) initially in the excited state. Solving the Optical Bloch Equations results in:{

σee(t) = e−Γt

σgg(t) = 1− e−Γt
(90)

In this case, the lifetime of the excited state is given by tsp = 1/Γ. Spontaneous
emission does not create coherence; the density matrix for this system is diagonal. For
any given time t, the state of the system is a statistical mixture.

Figure 2: Evolution of the population in absence of incident light

2.2.5. Stationary state

The spontaneous emission induces irreversibility in the system. Because of irre-
versibility, the atomic state will evolve to a stationary state in timescales t ≫ Γ−1; Rabi
oscillations will prevail only for a short, transient time. The dynamics of the excited and
ground state populations are graphed above in Fig. 2. We can see it in the evolution of
the excited population shown at Fig. 3
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Figure 3: Evolution of the excited population for different Rabi frequencies

To obtain the stationary state in the general case (i.e., for any value of Ω(t)), we
set the temporal derivatives at Eq. ( 89) to 0 in the case γ = Γ/2. Writing the saturation
parameter s as

s =
1

2

|Ω0|2

∆2 + Γ2/4
; (91)

we obtain the population of the excited state in the stationary regime:

σee,st =
1

2

s

1 + s
. (92)

In resonance, the saturation parameter becomes:

s0 = s(∆ = 0) =
2Ω2

0

Γ2
. (93)

We can write it as a function of the incident intensity. The incident intensity if the
modulus of the Poynting vector,

I =
E2
0

2µ0c
. (94)

Replacing E0 = ℏΩ0/d at the equation above, we find I as a function of Ω0. Then,
replacing in the expression for s0,

s0 =
4µ0cd

2I

ℏ2Γ2
=

I

Isat
, (95)

with
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Isat =
(ℏΓ)2

4µ0cd2
(96)

the saturation intensity of the transition. We can deduce from a full quantum model that
the decay rate Γ and the dipole moment d are related by d2 = 3πε0ℏΓc3/ω3

0. Therefore,

Isat =
ℏΓω3

0

12πc2
=
π

3

hcΓ

λ30
, (97)

with λ0 = 2πc/ω0 the wavelength of the atomic resonance. Typically, the order of mag-
nitude of the saturation intensity is [mW/cm2]. A new useful expression for σee,st can be
written:

σee,st =
1

2

s0
1 + s0

1

1 +
4∆2

(1 + s0)Γ2

, (98)

which is a Lorentzian curve with it’s maximum value set in resonance. The minimum
measurable width possible is Γ - the reason why it is called the natural decay rate. As
shown in Fig. 4, the FWHM (Full Width at Half Maximum) of the curve is

∆1/2 =
√
Γ2 + 2|Ω0|2 . (99)

Figure 4: Stationary excited state population as a function of the detuning, for different
resonant saturations

If s0 ≪ 1, |Γ0| ≪ Γ → ∆1/2 ∼ Γ (linear regime). But, if s0 ≫ 1, |Γ0| ≫ Γ, then
∆1/2 ∼

√
2|Ω0|. This phenomenon is called power broadening.

Besides the expression obtained in equation 92, doing the same procedure results in
the expression for the stationary coherence

σ′
ge,st =

1

1 + s

iΩ0 e
−iϕL(R)

2

1

Γ/2 + i∆
. (100)

From that, we can calculate the stationary value of the raising and lowering opera-
tors:
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⟨σ̂+⟩ = Tr[ρ̂ σ̂+] = σge,st = eiωtσ′
ge,st =

1

1 + s

Ω0 e
−i(ϕL(R)−ωt)

2

1

∆− iΓ/2
(101)

⟨σ̂−⟩ = Tr[ρ̂ σ̂+] = σeg,st = e−iωtσ′
eg,st =

1

1 + s

Ω0 e
i(ϕL(R)−ωt)

2

1

∆ + iΓ/2
(102)

They are used to calculate the average value of the stationary atomic dipole moment:

⟨d̂⟩st = d (⟨σ̂+⟩+ ⟨σ̂−⟩) =
d
√
s

1 + s

[
∆cos (ϕL(R)− ωt) +

Γ

2
sin (ϕL(R)− ωt)

]
. (103)

For s≪ 1, ⟨d̂⟩st ∝ E0, and for s≫ 1, ⟨d̂⟩st → 0. This does not mean that the dipole
is not being excited; but it’s phase is lost in the high saturation regime.

2.3. The semiclassical Hamiltonian in the RWA

We see from the expressions for ⟨σ̂+⟩ and ⟨σ̂−⟩ that they evolve with the frequencies
±ω. In order to obtain an expression of the interaction Hamiltonian that eliminates the
fast rotating terms, we rewrite the Hamiltonian of Eq. (55) as

ĤId =
ℏΩ0

2

(
ei(ϕL(R)−ωt) + e−i(ϕL(R)−ωt)) (σ̂+ + σ̂−) . (104)

It is now easy to see that, from the four terms above, two of them will evolve with
a rapid phase term of the form e±2iωt, due to the dependence of the operators themselves
on time. We can perform the RWA directly on the Hamiltonian, eliminating exactly the
terms that give rise to the terms that were eliminated while calculating the dynamics in
the last section. We get the interaction Hamiltonian in the RWA:

ĤId,RWA =
ℏΩ0(R̂)

2

(
ei(ϕL(R̂)−ωt) σ̂+ + e−i(ϕL(R̂)−ωt) σ̂−

)
. (105)

2.4. Selection rules for electric dipolar transitions

We will now consider in detail which transitions are allowed by the dipolar Hamil-
tonian.

In first order, the interaction Hamiltonian in the electric dipolar approximation,
ĤId, can cause transitions from a level |n, ℓ,mℓ⟩ to another level |n, ℓ′,m′

ℓ⟩ whenever the
off-diagonal matrix element

⟨n′, ℓ′,m′
ℓ|ĤId|n, ℓ,mℓ⟩ (106)

is not zero. But most of those non-diagonal matrix elements are actually zero: This
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implies that there are only a few electronic transitions allowed by the electric dipolar in
first order: Those that respect the selection rules. We will now explicitly work out these
selection rules.

The atomic eigenstates defined by Eq. (27) take the z axis as the quantization direc-
tion (i.e., the direction of the angular momentum that defines the mℓ quantum number).
Within this definition, we define three orthonormal directions for the electric field of the
incoming light, in the complex representation for the electric field:

σ+ =
ex + iey√

2
; (107)

σ− =
ex − iey√

2
; (108)

π = ez . (109)

In the expressions above, ex (resp. ey, ez) stands for the unitary vector in the x
(resp. y, z) direction. We can decompose the amplitude of the electric field on this basis
as

E0 = E+ σ+ + E− σ− + Ez π = E+ + E− + Ez . (110)

The total electric field in the complex configuration is written as

E(0, t) = Re[E0e
−iωt)] . (111)

We will explicitly verify how the electric field for the complex polarizations σ±
behaves:

E(0, t) = Re[E±e
−iωt] = Re[E±σ±e

−iωt] =
E±√
2
[cos(ωt) ex ± sin(ωt) ey] . (112)

This means that the polarizations σ± represent the two orthogonal circular polar-
izations on the plane xy.

We note that not all polarizations are allowed for a light field with a definite k.
For example, for light propagating in z direction, k = k ez, the electric field direction
must be contained in the xy plane, and only the σ+ and σ− polarizations are allowed.
In any case, only 2 orthogonal polarizations are allowed for definite k, which will be
a linear combination of the three polarizations defined above. It is also important to
note that these polarizations do not correspond directly to the helicity of light. Helicity
corresponds to the polarization of light (or to the spin of its constituent photons) projected
in its propagation direction. This is different from the definition above, rather related to
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a fixed quantization direction. In particular, light of positive helicity and propagating
with k = +k ez has σ+ polarization on the basis defined above; light of positive helicity
propagating at k = −k ez has σ− polarization on the same basis; and light of positive
helicity propagating at k = +k ex will have a combination of all three polarizations.

Let us work out the selection rules for each one of the different polarizations of light:

2.4.1. Selection rules for σ+ polarization

For σ+ polarization, the dipolar Hamiltonian is written as

Ĥ(σ+)
Id = −d̂ · E+(0, t) = e

E+√
2
(x̂ cos(ωt) + ŷ sin(ωt))

= e
E+

2

[
e−iωt

(
x̂+ iŷ√

2

)
+ eiωt

(
x̂− iŷ√

2

)]
. (113)

We have learned before (see Eq. (105)) that the term that rotates with e−iωt is quasi-
resonant to transitions from the ground to the excited state; and the term that rotates
with eiωt is quasi-resonant to transitions from the excited to the ground state. Now, we
need to see what is the effect of each one of the terms x̂±iŷ√

2
on the electronic wavefunctions.

For that, let us calculate the nondiagonal matrix elements of those operators:

⟨n′, ℓ′,m′
ℓ|
(
x̂± iŷ√

2

)
|n, ℓ,mℓ⟩ =

ˆ
R3

d3rψ∗
n′,ℓ′,m′

ℓ
(r)

(x± iy)√
2

ψn,ℓ,mℓ
(r)

=

ˆ ∞

0

dr r2R∗
n′ℓ′(r)Rnℓ(r)

ˆ π

0

dθ
ˆ 2π

0

dφ sin θ[Y
m′

ℓ

ℓ′ (θ, φ)]∗Y mℓ
ℓ (θ, φ)

r sin θ e±iφ√
2

. (114)

We can write part of the integrand as a function of spherical harmonics, as

(x± iy)√
2

=
r sin θ e±iφ√

2
= ∓

√
4π

3
r Y ±1

1 . (115)

Replacing it in Eq. (114), we get

⟨n′, ℓ′,m′
ℓ|
(
x̂± iŷ√

2

)
|n, ℓ,mℓ⟩ =

∓
√

4π

3

ˆ ∞

0

dr r3R∗
n′ℓ′(r)Rnℓ(r)︸ ︷︷ ︸

Radial

ˆ π

0

dθ
ˆ 2π

0

dφ sin θ[Y
m′

ℓ

ℓ′ (θ, φ)]∗ Y 1
±1(θ, φ)Y

mℓ
ℓ (θ, φ)︸ ︷︷ ︸

Angular

.

(116)

The angular part of this integral is of the form
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I
mlmml′
l 1 l′ =

ˆ π

0

dθ sin θ
ˆ 2π

0

dφ[Y ml
l (θ, φ)]∗Y m

1 (θ, φ)Y
m′

l

l′ (θ, φ) . (117)

This integral has the following property: it is different from 0 only if{
|ℓ− ℓ′| = 1

m′
ℓ = mℓ +m

(118)

This means that the polarization σ+ will only cause a transition between two levels
with |∆ℓ| = 1; and it will increase mℓ by 1 if the transition goes from a level of lower
energy to a level of higher energy (or decrease mℓ by 1 if the transition goes from a level
of higher energy to a level of lower energy).

2.4.2. Selection rules for σ− polarization

For σ− polarization, the dipolar Hamiltonian is written as

Ĥ(σ−)
Id = −d̂ · E−(0, t) = e

E+√
2
(x̂ cos(ωt)− ŷ sin(ωt))

= e
E+

2

[
e−iωt

(
x̂− iŷ√

2

)
+ eiωt

(
x̂+ iŷ√

2

)]
. (119)

We see that the role of the terms
(
x̂−iŷ√

2

)
is inverted with respect to the σ+ po-

larization. We can thus jump to the conclusions: the polarization σ− will only cause a
transition between two levels with |∆ℓ| = 1; and it will decrease mℓ by 1 if the transition
goes from a level of lower energy to a level of higher energy (or increase mℓ by 1 if the
transition goes from a level of higher energy to a level of lower energy).

2.4.3. Selection rules for π polarization

For π polarization, the dipolar Hamiltonian is written as

Ĥ(π)
Id = −d̂ · Ez(0, t) = eẑ Ez cos(ωt) = e ẑ

Ez
2

(
eiωt + e−iωt

)
. (120)

Now, both the term quasi-resonant with the excitation to an upper level and the
term quasi-resonant with the excitation to a lower level are proportional to the same
operator ẑ. We can write z in spherical coordinates as

z

r
=

√
4π

3
r Y 0

1 (121)

The matrix element will now be proportional to the term
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⟨n′, ℓ′,m′
ℓ|Ĥ

(π)
Id |n, ℓ,mℓ⟩ =

−
√

4π

3

ˆ ∞

0

dr r3R∗
n′ℓ′(r)Rnℓ(r)︸ ︷︷ ︸

Radial

ˆ π

0

dθ
ˆ 2π

0

dφ sin θ[Y
m′

ℓ

ℓ′ (θ, φ)]∗ Y 0
1 (θ, φ)Y

mℓ
ℓ (θ, φ)︸ ︷︷ ︸

Angular

.

(122)

We can also apply the result for the integral Imℓmm
′
ℓ

ℓ1ℓ′ , and we find that for π polar-
ization, the nondiagonal element will be nonzero if |∆ℓ| = |ℓ− ℓ′| = 1, and if m′

ℓ = mℓ.
We can conclude that, in general, the electric dipolar transition only causes transi-

tions between levels separated by |∆ℓ| = |ℓ− ℓ′| = 1, regardless of the light polarization:
A level S can only be coupled to a level P, a level P to a level S or D, and so on. As for
the selection rule on the mℓ quantum number, it shows that the change in mℓ depends on
the incoming light polarization, as shown in Fig. (5).

ml = 0

ml' = 0ml' = -1 ml' = 1

σ- σ+

π

Figure 5: Transitions allowed by polarizations σ+, σ− and π.

These selection rules are directly related to the conservation of angular momen-
tum. A photon with polarization σ+ has angular momentum of +ℏ in the +ez direction,
while a photon with polarization σ− has angular momentum of −ℏ in the +ez direction.
This angular momentum is absorbed by the electron of the atom. This means that the
only allowed transitions for the electron are S ↔ P ↔ D ↔ F. The electron absorbs the
photon and it’s angular momentum, so these properties are directly related to angular
momentum conservation.

3. Light forces

In the previous section, we calculated the effect of incident light on the electronic
degrees of freedom (also called internal degrees of freedom) of the atom; here, we will ask
what effect the incident light has on the position R and momentum P of the atom’s center
of mass, also called external degrees of freedom. To do this, we must now let R to be a
new dynamical variable of the system. If the atom is treated in quantum mechanics, then
R → R̂. We must also consider its canonical momentum P̂, and add to the Hamiltonian
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of eq. (51) the kinetic energy of the center of mass of the atom of mass m, so that the
total Hamiltonian becomes

ĤRWA = ℏω0|e⟩⟨e|+
ℏΩ0(R̂)

2

(
ei(ϕL(R̂)−ωt) σ̂+ + e−i(ϕL(R̂)−ωt) σ̂−

)
+

P̂2

2M
. (123)

We note also that now, we allow the Rabi frequency to depend on the position of
the center of mass. This accounts for incoming light fields whose amplitude depend on
the position:

E(R, t) = E0(R) cos(ϕL(R)− ω0t) , (124)

and then Ω0(R) = dE0(R)/ℏ. For the theoretical ideal case of plane waves, the
amplitude is constant; but for the experimentally relevant case of an incoming laser beam,
described by a Gaussian profile, we have

E(R, t) = Emax
w0

w(Z)
e

−ρ2
w(Z)2 e

i

(
kZ+k

ρ2

2Rf (Z)
−ψG(Z)

)
−iωt

. (125)

In the above equation, we suppose that the beam is propagating in the z direction.
The parameter w0 is the waist of the beam in the focal position Z = 0, and the functions

w(Z) = w0

√
1 +

(
Z

ZR

)2

(126)

Rf (Z) = Z

[
1−

(
ZR
Z

)2
]

(127)

ψG(Z) = arctan (Z/ZR) (128)

are the waist of the beam, the radius of the wavefront, and the Gouy phase, respectively,
with ZR = πw2

0/λ the Rayleigh length. We identify from the equation above

E0(R) = Emax
w0

w(Z)
e

−ρ2
w(Z)2 (129)

ϕL(R) = kZ + k ρ2

2R(Z)
− ψG(Z) . (130)

More more complex laser beam configurations, the phase and amplitude can still
vary; in general, we will describe any light field impinging on the atom by the expression
of Eq. (124), leading to the Hamiltonian (123).

The dynamics of the atom determined by the above Hamiltonian is, in the general
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case, complicated because it couples the internal and external degrees of freedom of the
atom, and because the atom can be delocalized in time and space. We will place ourselves
in a simplified configuration of localized atoms in space and momentum.

• Localization in space: The typical length scale of radiation is λ. We consider
an atom localized in space if the typical extension of its wavefunction ∆R is much
smaller than λ: ∆R

λ. This guarantees that the whole wavefunction of the atom sees the same phase of
light.

• Localization in momentum space: Spectrally, the atoms are considered localized
in momentum if the whole atomic wavefunction sees approximately the light with
same detuning. This means that the momentum spread, ∆P , must be smaller than
the momentum spread that causes a Doppler shift of the resonance equal to the
resonance width Γ: ∆D = k∆v = k∆P/M ≪ Γ, or still ∆P ≪MΓ/k.

We can combine both conditions via the uncertainty principle:

ℏ
2
≤ ∆R∆P ≪ MΓλ

k
=

2πMΓ

k2
. (131)

Rearranging the condition above, we get, apart from a numerical factor of order 1,

M

ℏk2
≪ Γ−1 . (132)

This is called the condition of broad resonance. It is a hierarchy of two different
timescales. The timescale on the left is the timescale for the atomic velocity to change
by the Doppler quantity, k∆v ∼ Γ, which can be considered to be a typical timescale
for the external dynamics to have an impact on the internal dynamics. Indeed, if each
photon carries a momentum ℏk, and if the typical rate of photon absorption is Γ, then
in a time ∆t the atom has absorbed Γ∆t photons with a total momentum Γ∆t ℏk and a
change in velocity Γ∆tℏk/M , establishing a Doppler timescale k(Γ∆text ℏk/M) ∼ Γ, or
still ∆text ∼M/(ℏk2). On the other hand, the tmescale for the internal dynamics is given
by the lifetime τ ∼ Γ−1 of the internal levels. Thus, the condition of broad resonance can
be reinterpreted as

text ≫ τ . (133)

This entails a hierarchy in the dynamics of the system. In this regime, the functions
of R present in the Bloch equations (89) are practically constant during times of the order
of Γ−1, so we can solve first the internal dynamics, by considering the external variables
constant, and then solve for the external dynamics, supposing that the internal state is
always quasi-stationary, adiabatically following the external state dynamics. Moreover,
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the conditions for atom localization in space and momentum allow to replace the operators
R̂ and P̂ by their average values while solving for the internal dynamics. This means that
the procedure used to obtain the stationary behavior of the internal degrees of freedom
is still valid, but now the steady state obtained will be a slow function of the external
variables.

It is important to note that not all atomic transitions verify the decoupling of
timescales. Intuitively, if a transition is very narrow, that is, with a small Γ, the in-
ternal timescale Γ−1 will be slow, and we may experience a breakdown of decoupling.

Since we have already solved for the internal dynamics in the previous section, we
now turn to the external dynamics, considering the position and momentum of the center
of mass as operators again, in order to obtain their dynamics.

We calculate the time derivative of the average value of the position via the Ehrenfest
theorem:

d⟨R⟩
dt

=
1

iℏ
⟨[R̂, ĤRWA]⟩+

�
�
�

���
0〈

∂R̂

∂t

〉
=

⟨P̂⟩
M

.

This means that the speed is a simple function of the average momentum. The first
derivative of the momentum is thus the net force:

F =
d⟨P⟩
dt

. (134)

The time derivative of the momentum is found via the Ehrenfest theorem:

F =
1

iℏ
⟨[P̂, ĤRWA]⟩+

�
�

�
���
0〈

∂P̂

∂t

〉
=

1

iℏ
⟨[P̂, Ĥd,RWA]⟩ .

In the position representation, P̂ = −iℏ∇R, and we obtain

F = −⟨∇R ĤId,RWA⟩ . (135)

We obtain directly

F = −ℏ
2

〈
∇RΩ0(R̂)

(
σ̂+ ei(ϕL(R̂)−ωLt) + σ̂− e−i(ϕL(R̂)−ωLt)

)〉
− iℏ

2

〈
Ω0(R̂)

(
σ̂+ ei(ϕL(R̂)−ωLt) − σ̂− e−i(ϕL(R̂)−ωLt)

)
∇RϕL(R̂)

〉
.

Considering that the atom is localized, we replace R̂ by R and we find
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F = −ℏ∇RΩ0(R)

2

(
⟨σ̂+⟩ ei(ϕL(R)−ωLt) + ⟨σ̂−⟩ e−i(ϕL(R)−ωLt)

)
− iℏΩ0(R)

2

(
⟨σ̂+⟩ ei(ϕL(R)−ωLt) − ⟨σ̂−⟩ e−i(ϕL(R)−ωLt)

)
∇RϕL(R) .

We know already the average values of the raising and lowering operators, and we
can work out the expressions in parenthesis:

(
⟨σ̂+⟩ ei(ϕL(R)−ωLt) + ⟨σ̂−⟩ e−i(ϕL(R)−ωLt)

)
=

1

1 + s

Ω0∆

∆2 +
(
Γ
2

)2 (136)

(
⟨σ̂+⟩ ei(ϕL(R)−ωLt) − ⟨σ̂−⟩ e−i(ϕL(R)−ωLt)

)
=

i

1 + s

Ω0
Γ
2

∆2 +
(
Γ
2

)2 (137)

Based on Eq. (92), we can also write

σee,st =
1

2

s

1 + s
=

1

2

1

1 + s

Ω2
0

∆2 +
(
Γ
2

)2 , (138)

And we get the total force

F = −2ℏ∆σee,st
∇RΩ0(R)

Ω0(R)
+ ℏΓσee,st ∇Rϕ(R) = Fd + FRP , (139)

where Fd is the dipolar force and FRP the radiative pressure force. Let us discuss
them separately.

3.1. The radiation pressure force

The radiation pressure force is given by

FRP = ℏΓσee,st ∇RϕL(R) . (140)

In order to interpret the expression for the radiation pressure, we note that the
spatial phase of light ϕL(R) is equal to k · R for a plane wave, or even kz for a wave
vector in the z direction, k = k ez; while in the case of the Gaussian beam (see eq. (125)),
it has two additional terms. However, these two additional terms have a typical spatial
variation determined by the typical distance ZR ≫ λ, whereas the term k ·R varies on
the spatial scale of the wavelength of light, λ; thus, in both cases (and, in general, for any
light source),

∇RϕL ≃ ∇R (k ·R) = k ,

which means that the pressure force becomes
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FRP = Γσee · ℏk =
1

2

s0
1 + s0 + 4∆2/Γ2

Γℏk . (141)

This expression has a simple interpretation. We first note that the term ℏk is
the linear momentum of a photon with wave vector k. Next, Γ represents the decay
rate of the excited state, that is, the temporal rate of re-emission of a photon of light
that has been absorbed by the atom to become excited; so that σee,stΓ represents the
average rate of absorption and re-emission of photons. The radiation pressure force,
then, is nothing more than the time-averaged momentum received by the atom from the
absorption of laser photons. The subsequent re-emission of absorbed photons does not
contribute to the average force, since the direction of spontaneous emission is random and
the acquired average vector momentum is zero. On the other hand, despite being zero on
average, it exhibits non-zero fluctuations, since photons are constantly being re-emitted,
and spontaneous emission therefore causes heating of the atom by causing a random
evolution of its momentum state. It is important to note that the radiation pressure force
is non-conservative, that is, it does not derive from a potential. The dissipative nature of
this force is inherited from the dissipative nature of spontaneous emission, discussed in
the previous section.

For high intensity, resonant light, the acceleration caused by radiation pressure in
the atom can reach high values. Indeed, for incoming light s0 ≫ 1 and ∆ = 0 with the
rubidium 780 nm resonance of natural width Γ = 2π× 6 MHz, the acceleration caused on
the rubidium-87 atom with mass mRb87 will be equal to Γ/2 ℏk/mRb87 = 1.1.105 m.s−2.
This is 104 times more intense than gravity!

3.2. The dipolar force

The dipolar force is written as

Fd = −2ℏ∆σee,st
∇RΩ0(R)

Ω0(R)
= −ℏ∆

s

1 + s

∇RΩ0(R)

Ω0(R)
. (142)

This force derives from the potential

Ud(R) =
ℏ∆
2

ln (1 + s(R)) , (143)

where the dependence of s on R comes from the dependence of Ω0 on R. Indeed,

Fd = −∇RUd(R) = −ℏ∆
2

∇R [ln (1 + s(R))] = −ℏ∆
2

1

1 + s
∇Rs(R)

= −ℏ∆
2

1

1 + s

2Ω0(R)∇RΩ0(R)

∆2 +
(
Γ
2

)2 = −ℏ∆
s

1 + s

∇RΩ0(R)

Ω0(R)
. (144)
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Near resonance, the radiation pressure force is much stronger than the dipolar force;
on the other hand, when the light becomes highly detuned, we see from Eq. (141) that
the radiation pressure tends to zero as 1/∆2, while the dipolar force decays as 1/∆. This
is the conservative regime where the dipolar force is usually relevant. In this regime, for
which ∆ ≫ Ω,Γ, the saturation parameter satisfies s ≪ 1, so that ln(1 + s) ≃ s, and we
can simplify the above expression as

Ud ≃ ℏ∆
2
s(R) =

ℏ∆
2

2Ω2
0(R)

Γ2 + 4∆2
≃ ℏ∆

2

2Ω2
0(R)

4∆2
=

ℏΩ2
0(R)

4∆
.

From the definition of the saturation intensity (Eq. (97)) and of the saturation
parameter, we can also write

Ω2
0 =

Γ2

2

I
Isat

=
6πc2 Γ

ℏω3
0

I ,

in such a way as to write the dipolar potential in the regime ∆ ≫ Γ,Ω as

Ud(R) ≃ 3πc2

2ω3
0

Γ

∆
I(R) ,

where we again indicate the explicit dependence of the intensity on R to let clear that
the spatial dependence of the potential comes from the spatial dependence of the light
intensity.

The expression above is derived in the context of the RWA, for which |∆| =

|ω − ω0| ≪ ω, ω0. However, atomic trapping in a potential of the above form involves
the use of very high detunings, ∆ ∼ ω, ω0 (for example, when we use light of wavelength
1064 nm to trap Rb or Sr, from resonances at 780 nm and 461 nm, respectively). It can
be shown that preserving the non-resonant terms would cause another term to appear
in the above equation, so that the total potential for a far-detuned optical dipolar trap
(ODT) is written as

UODT(R) =
3πc2

2ω3
0

(
Γ

ω − ω0

+
Γ

ω + ω0

)
I(R) . (145)

The above potential can also be derived from a purely classical approach, in which
the atom is treated as a classical dipole. Indeed, in the high-detuning regime, there is no
evidence that the atom’s behavior follows the laws of quantum mechanics. An excellent
reference for the classical derivation of the above expression is given in [2].

We see in the expression above that for negative detunings, ∆ < 0, the minimum
of the potential happens for the highest intensities, i.e. the atoms are attracted to the
maximum of the intensity; while for ∆ > 0, the atoms are repelled by the light intensity.
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4. Cooling and trapping neutral atoms

4.1. Doppler shift and Doppler broadening of the atomic

resonance

The atomic velocity with respect to the laboratory reference frame will modify the
frequency of the incoming light seen by the atom, due to the Doppler effect. Let us suppose
an atom with velocity v interacting with light that has wave vector k in the laboratory
reference frame. With ω = kc the frequency of light in the laboratory reference frame, the
frequency seen by the atom will be ω′ = ω− k · v. This means that in all the expressions
deduced previously, the detuning ∆ must be corrected for an atom of velocity v in order
to account for the Doppler effect, as

∆′ = ω′ − ω0 = ω − k · v − ω0 = ∆− k · v . (146)

This equation can be reinterpreted by saying that the atomic velocity shifts its
resonance in the laboratory frame to ω′

0 = ω0 +k ·v, so that rearranging the terms, ∆′ =

ω − ω′
0. When we consider an atomic vapor of temperature T , the Doppler shift of each

individual atom shifts its resonances according to the thermal velocity distribution, which
gives rise to a Doppler broadening of the transition. To describe the phenomenon, let
us assume that the wave vector of the light incident on the vapor is in the z direction,
k = kez. The Doppler effect of each atom is given by the term k · v = k vz, with vz the z
component of the velocity v. In an atomic vapor at temperature T , the vz component is
a random variable of Maxwell-Boltzmann distribution

ρv,T (vz) =
1√

2πvRMS
e−v

2
z/(2 v

2
RMS) (147)

with

vRMS =

√
kBT

M
(148)

the mean square velocity in any direction, and kB the Boltzmann constant. This distribu-
tion of vz implies a distribution of atomic resonances ω′

0 = ω0+k vz around the resonance
ω0 of an atom at rest,

ρω,T (ω
′
0) =

1√
2π∆D

e−(ω′
0−ω0)2/(2∆2

D) , (149)

with the Doppler width (in rad/s) ∆D = kvRMS, or still

∆D = 2π × 1

λ

√
kBT

M
. (150)
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For the λ = 780.24 nm transition of 87Rb, assuming a vapor at 300 K, the Doppler
broadening is ∆D = 2π× 217 MHz, much larger than the natural width of the transition,
Γ = 2π × 6.07 MHz. This is why the absorption spectra of light from atomic vapors at
room temperature have broadened lines. On the other hand, a cloud of cold Rb atoms with
a typical temperature of 50 µK has a Doppler broadening ∆D = 2π × 89 kHz, negligible
with respect to Γ: In this regime, there are no notable effects of Doppler broadening.

4.2. Optical molasses

One of the first cooling techniques invented with the help of the light forces discussed
in the last section is called optical molasses. The basic idea of this technique is to obtain,
through the clever combination of light beams, an effective dissipative force on atoms, in
the form

Fmel = −β v . (151)

A force with this dependence on the velocity, with β > 0, always decreases the energy
of the system, as it always performs negative work on the atom: The power generated by
the force is given by

Pmel = Fmel · v = −β v2 . (152)

Furthermore, the equilibrium condition for this force is v = 0, which suggests that
with such a force we could obtain a gas that is precisely still, with zero temperature. This,
however, is not true, since we are only considering the average value of the force; we will
see how the fluctuations of the light forces will limit the minimum temperature achievable
with this technique.

A way to obtain a dissipative force as shown above is by combining counterpropa-
gating beams in the three orthogonal directions of space, with a frequency ω slightly lower
than the atomic frequency ω0. Since the beams will be close to resonance, the radiation
pressure force is much greater than the dipole force, so we will neglect the latter. Since
the radiation pressure force occurs in the direction of k, that is, the direction of beam
propagation, we see that each pair of counterpropagating beams acts independently of
the other pairs, modifying only the velocity component in its propagation direction. We
will thus consider in the following a 1D model, with a pair of counterpropagating beams
in the ±ez direction acting on the vz component of the atomic velocity.

In this 1D model, then, we consider a pair of beams incident on the atom. One
of them has wave vector k+ = k ez, and the second k− = −kez, both with the same
detuning ∆ = ω − ω0 with respect to an atom at rest. However, since the z component
of the atom velocity is given by vz, the detuning seen by the atom will be corrected by
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Figure 6: Plot of the forces F± made by each counterpropagating beam in the directions
±ẑ, and the total force represented by the sum of both. The force is normalized by the
maximum force Ω2

0 ℏk/Γ, and the velocity is normalized by the velocity Γ/k required to
shift the atomic resonance away from Γ. The light detuning is ∆ = −Γ.

the Doppler effect: ∆′
± = ∆∓ kvz, with ∆′

+ (resp. ∆′
−) the detuning with respect to the

beam propagating in ez (resp. −ez) direction. Each of the beams causes a force on the
atom, which we will indicate respectively by F+ and F−. In order to consider the total
force acting on the atom as the sum of the individual forces, the saturation parameter
s must satisfy s ≪ 1; indeed, in the opposite case where s ≳ 1, the saturation of the
transition by one beam alters the absorption of photons from the opposite beam and vice
versa, since the atom spends less time in the ground state. Within the regime s≪ 1, we
obtain the expression for F+ and F− from the expression (141) for the radiation pressure
force:

F± =
2Ω2

0

Γ2 + 4(∆′
±)

2

Γ

2
ℏk± = ± Ω2

0 Γ

Γ2 + 4 (∆∓ kvz)
2 ℏ kez , (153)

where we have used the relation, valid for s≪ 1,

s

1 + s
≃ s =

2Ω2

Γ2 + 4∆2
.

We see in Fig. 6 the plot of the total force acting on the atom, F = F+ +F−, which
is written as

F = F+ + F− = − 16Ω2
0 Γ∆ ℏ k2 vz[

Γ2 + 4 (∆ + kvz)
2] [Γ2 + 4 (∆− kvz)

2] ez . (154)

Fig. 6 shows that the total force presents a linear behavior for low speed, as we
anticipated in Eq. (151). Obtaining the limit for low speeds from the expression above,
we have
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Fvz→0 ≃
16Ω2

0 Γ∆ ℏ k2

(Γ2 + 4∆2)2
vz ẑ = −β vz ez , (155)

with

β = −16ℏk2
Ω2

0 Γ∆

(Γ2 + 4∆2)2
= −8ℏk2

sΓ∆

Γ2 + 4∆2
. (156)

We see that β is a positive quantity for ∆ < 0; that is, we need to have a negative
detuning in order to cool the atomic sample. In contrast, a positive detuning gives β < 0,
which creates a force in the same direction as the velocity, causing heating of the atomic
sample.

In the above expression, the friction coefficient increases with s; thus, increasing the
intensity of the beams ensures increasingly faster cooling. We must point out, however,
that the expression is valid only in the regime s≪ 1. To obtain an expression for β in the
regime s ≳ 1, we would actually need to recalculate the atomic internal state subject to
light from both directions, and then recalculate the force from this state. We would find
that the coefficient β does not increase indefinitely with s, but rather reaches a maximum
and then begins to decrease. This occurs because increasing s causes the transition width
to widen, as shown by eq. (99). This means that the force becomes less sensitive to
variations in atomic velocity due to the Doppler shift, decreasing the cooling effect.

The dissipative force shown above is related to a typical temporal rate of cooling,
which we will call γmel. This rate can be simply obtained from the parameter β in the
case β > 0 as

γmel =
β

m
. (157)

From this rate, we extract a characteristic time for the evolution of the atomic
velocity until reaching the final velocity, τmel = 1/γmel, or

τmel =
m

4ℏk2
Γ2 + 4∆2

sΓ |∆|
. (158)

Let us calculate this time for typical parameters of an optical molasses applied to the
broad transition of a 88Sr atom (λ = 460.82 nm, Γ = 30.5 MHz), of mass 1.46.10−25 kg.
Let us take ∆ = −Γ/2 and s0 = 0.1, so that τmel = 150 µs. This justifies the typical
experimental timescales that optimize the cooling of an optical molasses, of the order of
the millisecond or even smaller.

If we now turn to the 3D situation, with three pairs of counterpropagating beams,
we realize that in all directions we will have a similar force. If the intensity of the beams
in each direction of space is the same, we will have the same Rabi frequency Ω0; and if
the detuning is the same, we will also have the same ∆, which guarantees the same β for
the three directions of space. In this regime, the total force for kv ≪ ∆ will be written
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as the sum of the total forces in each direction:

Fmel = −β (vxex + vyey + vzez) = −β v , (159)

as anticipated in the beginning of the section.

4.2.1. Doppler limit of optical cooling

As stated previously, although the equilibrium velocity of the above force is v = 0,
an atomic cloud subjected to this force does not reach zero temperature (which would
be prohibited, in fact, by the Third Law of Thermodynamics). This occurs for two main
reasons: The first is because spontaneous emission, responsible for the re-emission of
absorbed photons, causes a force that is zero on average (since the direction of pho-
ton emission is random) but presents non-zero fluctuations. These fluctuations cause a
diffusion of the photon’s momentum in momentum space, which implies heating. The
balance between the heating effect caused by the fluctuation of the force and the cooling
effect obtained by the average force gives rise to an equilibrium temperature, the so-called
Doppler limit[3]

kBTD =
ℏΓ
4

1 + 2Ds0 +

(
2∆

Γ

)2

2|∆|
Γ

, (160)

where D is the molasses dimension: 1 for a pair of counter-propagating beams, 2 for 2
mutually orthogonal counter-propagating pairs, and so on. In the low-saturation limit,

kBTD,s0≪1 =
ℏΓ
4

1 +

(
2∆

Γ

)2

2|∆|
Γ

. (161)

This expression reaches a minimum value for ∆ = −Γ/2, which gives the minimum
temperature

TD,min =
ℏΓ
2kB

. (162)

For the D2 line of Rb, the temperature limit is TD,min = 146 µK, while for the
460.82 nm transition of Sr, TD,min = 732 µK. A narrow transition can have an extremely
low Doppler limit; for example, the 689 nm transition of Sr with Γ = 2π × 7.4 kHz has
TD,min = 178 nK.

It is important to say that, when the atom has a hyperfine structure, as is the case
with Rb and all other alkaline atoms, it is possible to cool it to temperatures much lower
than the Doppler limit, due to the so-called Sisyphus effect or polarization gradient
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cooling, which will not be discussed here (for those interested, consult [3] and [4]).
Another important limit is determined by the quantization of light. Indeed, the force

exerted on atoms presents a fundamental "granularity", since radiation pressure involves
the absorption or emission of quantized packets of momentum, the momentum of a single
photon ∆pr = ℏk. This granularity establishes a minimum average kinetic energy of the
order of the recoil kinetic energy

∆Er =
ℏ2k2

2m
. (163)

Equating this energy to kBT , we obtain the recoil limit:

Tr =
ℏ2k2

2mkB
. (164)

This limit is generally very low, on the order of hundreds of nanoKelvins, and is
irrelevant for broad transitions. However, for narrow transitions, it is higher than the
Doppler limit. For example, for the 689 nm transition of Stronrium, Tr = 229 nK,
comparable to the Doppler temperature of 178 nK. This is expected, since the condition
(132), which determines whether the resonance is broad or narrow, turns out to be exactly
a comparison between the energy scales given by the Doppler and recoil temperatures
(within a factor of 2).

4.3. Magneto-optical trap

The optical molasses presented in the previous section is capable of cooling an atom,
but not trapping it, since the molasses force does not depend on position, but only on
velocity. We could try to take advantage of the typical intensity distribution of a Gaussian
laser beam in a scheme that guarantees a spatially confining force; however, it is possible
to show that in the presence of only light beams exerting radiation pressure, it is not
possible to create a confining potential in the three directions of space.

The solution frequently applied in cold atom experiments is to spatially modulate
atomic resonances through the application of a position-dependent magnetic field. The
presence of the magnetic field will alter the atomic resonances through the Zeeman effect,
and a clever combination of the magnetic field profile with the polarization of the light will
ensure a trapping potential, as we will see below. This type of trap is called a magneto-
optical trap (MOT), but do not be fooled by the name: the forces involved in its operation
are only due to radiation pressure. The magnetic field will act here by modulating the
atomic resonances, in order to create spatial confinement.

As we did to understand the molasses mechanism, we will initially make a 1D model
to understand how the magneto-optical trap works, and we will call z the spatial coordi-
nate; the center of the trap is determined by the position z = 0. In the region where the
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trapping occurs, there is a linear magnetic field, which is 0 at the center of the trap and
points in the direction ez:

B(z) = b z ez , (165)

where b is the magnetic field gradient. The presence of this magnetic field causes a
modification of the energies of the atomic states by the Zeeman effect. Let us suppose
the simplest level structure for a dipolar allowed transition, from a nondegenerate level S
with mℓ = 0, to a level P with three different magnetic sublevels, m′

ℓ = −1, 0 and 1. The
level structure is shown in Fig. 5. We will call those excited levels |e−1⟩, |e0⟩ and |e1⟩,
following their magnetic number. The Zeeman effect caused by a magnetic field in the z
direction makes a energy shift of the atomic level which is proportional to the magnetic
number,

Em′
ℓ
= µB g m

′
ℓB . (166)

In the expression above, µB = eℏ/(2m) is the Bohr magneton, and g is the Landé
factor. For the simple model of the Hydrogen atom, where we do not consider the spin
of the electron and of the nucleus, gℓ = 1; for the general case, gF is an dimensionless
number which is a function of the whole angular momentum F of the atom.

Furthermore, since the magnetic field depends on the position, the energy of each
level will also depend on the position. As a consequence, the transitions σ± to the levels
with m′

ℓ = ±1 will have a natural frequency ω0,±(z) shifted by the electric field. This
frequency that can be calculated from the expression (166) for the Zeeman effect:

ω0,±(Z) = ω0 ± µBgFB(Z) = ω0 ± µBgF b Z . (167)

z

ω

ωL

z-z+

Figure 7: (a): Spatial dependence of atomic resonances in the presence of a positive
magnetic field gradient. (b): Photograph of a strontium atomic cloud trapped in a MOT,
re-emitting blue light at 460.82 nm that is continuously sent to the MOT for cooling and
trapping. The sample contains 5.107 atoms.

We shine a pair of counterpropagating laser beams on this atom in the presence of
a magnetic field, just as we did in the molasses case; to maintain the dissipative effect
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of the molasses, we will choose a detuning ∆ = ω − ω0 < 0. But now, it is necessary to
make the polarization of the beams explicit, since the resonance condition modified by
the Zeeman effect depends on it. In the case drawn in Fig. 7(a) with b > 0, the intelligent
choice of polarization consists of having both beams with positive helicity. This means
that the beam coming from the right, propagating in the +ez direction, has polarization
σ+ and will excite the excited state |e+⟩, while the counter-propagating beam in the −ez

direction has polarization σ− in the quantization direction +ez, and excites the transition
that leads to the state |e−⟩. The radiation pressure force applied by each of these beams
will be greater as the atoms get closer to resonance with their transition; if we call z± the
resonance position of the beams propagating respectively in the direction ±ez, we can
write the condition for resonance for each one of the beams as ω = ω0,±(z±), which gives
us, using eq. (167),

z± = ± ∆

µBgF b
. (168)

In Fig. (7)(a), we indicate the laser frequency in dotted lines, and we see that the
positions z± are determined graphically by the intersection of this dotted line with the
lines that identify the resonances ω0,±. Since ∆ < 0, we see that the beam propagating
in the direction +ez (coming from the right in Fig. (7)(a)) will be in resonance with the
transition it excites at a point z+ < 0, and the opposite occurs with the beam propagating
from the left. This means that these beams will exert a restoring force, which tends to
bring the atom towards the center if it moves away to the edges.

Quantitatively, we can write the total force by adapting Eqs. (153) to include the
Zeeman effect in each of the forces F± in the regime s≪ 1:

F± = ± Ω2 Γ

Γ2 + 4 (∆∓ kvz ∓ µBgF b z)
2 ℏ kez . (169)

The total force becomes

F = F+ + F− = − 16Ω2 Γ∆ ℏ k (kvz + µBgF b z)[
Γ2 + 4 (∆ + kvz + µBgF b z)

2] [Γ2 + 4 (∆− kvz − µBgF b z)
2] ez .

(170)
For low velocities, we can again expand the expression above in first order, and we

get

F = −βvz ez − κz ez . (171)

The value of β is the same value given in eq. (156). Now, an additional restoring
term appears in the force, identical to an elastic force with elastic constant κ given by
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κ = −8ℏk
µBgF b sΓ∆

Γ2 + 4∆2
. (172)

Again, for ∆ < 0, and assuming b > 0, κ is positive, and the force is restoring,
deriving from a confining harmonic potential. We thus see that the magneto-optical trap
provides a force with two components: a dissipative component as the optical molasses,
and an effectively conservative component, derived from a potential. Both forces are
products of the radiation pressure of the counterpropagating beams. It is also important to
emphasize that the sign of κ is a function of the helicity chosen for the counterpropagating
beams. If we chose the opposite helicity for the light, κ would change sign and the force
would be anti-trapping, expelling the atoms from the center of the trap. On the other
hand, if we changed the sign of the magnetic field gradient b, we would also have to choose
the opposite helicity of the light to ensure a restoring force.

I

I

R

R

L

L

L

L

Figure 8: Typical experimental setup for obtaining a 3D MOT: A pair of coils with the
same current flowing through them in opposite signs creates the quadrupole magnetic
field, and three pairs of counterpropagating beams create the radiation pressure force.
The helicity of each beam is indicated..

The extension of the above model to a 3D model is straightforward in the case of
s ≪ 1. However, in general the κ in each direction of space will be different. This is
because the magnetic field gradients in each direction of space, ∂Bx/∂x, ∂By/∂y, and
∂Bz/∂z, cannot be equal, as they are linked through the Maxwelle equations:

∇ ·B =
∂Bx

∂x
+
∂By

∂y
+
∂Bz

∂z
= 0 , (173)

which prevents the magnitude of the three from being equal. A very common magnetic
field configuration used to obtain a MOT is the configuration created with a pair of field
coils in an anti-Helmholtz arrangement. This arrangement corresponds to two identical
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coils, with the same axis (assumed to be in the z direction) and separated by a distance
D; in each coil, we pass an electric current of the same magnitude and opposite direction;
a schematic of the configuration can be found in Fig. 8. This arrangement assures, near
the midpoint between the coils, at a distance of D/2 from the center of each of them, a
magnetic field in the form

BaH ≃ b
(
−x
2
ex −

y

2
ey + z ez

)
. (174)

In this case,
∂Bx

∂x
=
∂By

∂y
= −b/2 and

∂Bz

∂z
= b.

4.4. Magneto traps

In the previous sections, we discussed cooling and trapping techniques that use
the radiation pressure force (Eq. 141) as one of their operating principles. This force
exhibits a dissipative character that culminates in a limit to the minimum temperature
achievable in these systems. Thus, to access even lower temperature regimes, on the order
of hundreds of nanokelvins, or to produce a gas in a well-defined equilibrium state, it is
necessary to use conservative traps. The first type of conservative trap capable of trapping
neutral atoms were magnetic traps, resulting from the interaction of the atomic magnetic
moment, µ, and an external magnetic field B, given by eq. 166. Thus, if the magnitude
of the magnetic field B(R) depends on the position R, eq. (166) shows that the energy
of the atom will depend on the position. This energy appears here in fact as a magnetic
potential energy, a function of the position R:

Umag(R) = µB gF mF B(R). (175)

In the equation above, we have assumed that the quantization direction of the atom
is the same as the direction of the magnetic field. For moving atoms, the magnetic field
experienced by them has a direction that varies on time. If the rate of change of the
direction of the magnetic field is not very high, the direction of the magnetic moment will
follow adiabatically the direction of the magnetic field, and the above expression is valid.
On the contrary, if the atom traverses a region of low magnetic field, the energy separation
between the different magnetic sublevels is decreased, allowing for some mixing of the
levels as the magnetic field direction seen by the moving atom is changed; the adiabatic
condition is not anymore fulfilled, and there can be a leak to other magnetic states.

For an atom in an electronic sublevel with mF > 0, its energy increases with the
magnitude of the magnetic field B, so that the potential minimum occurs at the position
of the minimum value of B(R); for this reason, levels with mF > 0 are called low field
seekers (LFS). Conversely, energy levels with mF < 0 are called high field seekers. It is
possible to show from the laws of electromagnetism that it is not possible to obtain a
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local maximum of the magnetic field magnitude, a result known as Earnshaw’s theorem
[5]. However, it is possible to obtain a field with a local minimum, so that it is possible
to trap LFS levels around a local minimum of the magnetic field.

4.4.1. Quadrupolar magnetic trap

The quadrupolar magnetic trap, produced by a pair of coils in an anti-Helmholtz
configuration (with currents in opposite directions) with a field given by eq. (174) is one of
the most common configurations in ultracold atom experiments, thanks to its simplicity,
large capture volume and high collision rate between the trapped atoms, essential for the
implementation of other cooling processes, such as evaporative cooling[6]. From eqs. (174)
and (175), the quadrupole trap potential can then be written as:

UQuad = µB gF mF b

√
x2

4
+
y2

4
+ z2. (176)

The quadrupolar trap works very well for not so cold samples, but below a few
tens of microkelvins it faces a severe limitation. This is because the magnetic field is
zero exactly at the center of the trap, giving rise to non-adiabatic transitions to non-
magnetically trappable atomic states, resulting in losses called Majorana losses. It can be
shown that these losses occur in the vicinity of the region of zero magnetic field, called the
"Majorana hole"[7]. Some strategies exist to circumvent this problem: Applying purely
magnetic traps with a magnetic field different from zero at the bottom (Ioffe-Pritchard
trap, QUIC trap, other strategies for atom chips), applying an optical beam that creates
a repulsive potential at the center (plug trap), or transferring the atoms to a conservative
optical dipolar trap.

4.5. Far-from-resonance optical dipolar traps

The optical dipolar trap makes use of the dipolar force, resulting from the interaction
between the electric dipole moment induced in the atom and the electric field of a laser
beam with a frequency far from the atomic transition frequencies [2], such as to eliminate
the radiation pressure force. The potential resulting from this interaction for a laser beam
with intensity profile I(R) is given by eq. (145).

In the case of a focused Gaussian laser beam propagating along the ez axis, its
intensity profile can be written from the electric field given by eq. (125) and is written as:

I(R) = I(ρ, Z) =
2P

w2
0

1

1 + (Z/ZR)
2 e

−2ρ2

w2
0

1

1+(Z/ZR)2 , (177)

The optical potential is thus given by
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Figure 9: Different possible configurations for a 3-level system with 2 coupling light fields.

UODT = U0
1

1 + (Z/ZR)
2 e

−2ρ2

w2
0

1

1+(Z/ZR)2 , (178)

with U0 = 3πc2ΓP/∆ω3
0w

2
0 the depth of the optical potential. It is easy to see that the

trapping potential of an optical trap acquires an attractive character if ∆ < 0, that is,
for laser beams with frequencies towards the red of the atomic transitions, or repulsive if
∆ > 0 and frequencies towards the blue of the atomic transition.

For a light field of any shape, we can generate light potentials of very different shapes
also. In particular, uniform potentials, harmonic potentials, optical lattices, arrays of
optical tweezers, rings, and other exotic potentials can be created by shaping the wavefront
and intensity of the light beams sent to the atoms.

5. Three energy levels connected by dipolar tran-

sitions

Let us turn again to the dynamics of the internal states of the atom. But let us
now include a third level, which will allow us to describe several new phenomena, such as:
light shift of atomic levels, two-photon transitions, Electromagnetic-Induced transparency,
dark states, ...

For a three-level system, three configurations are possible: The λ configuration, the
V configuration and the ladder configuration, depending on how the incoming electric
fields will couple those levels; those are shown in Fig. 9.

We will focus here on two configurations: λ and ladder. For both configurations,
light of Rabi frequency Ω12 couples level 1 to level 2, and Ω23 couples level 2 to level 3.
The levels 1 and 3 are considered stable or metastable, and do not decay.
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Figure 10: 3 level system in ladder configuration.

5.1. Ladder configuration

In the ladder configuration, as shown in Fig. 10, the level 2 can decay to 1 with rate
Γ21. The Hamiltonian is written

Ĥ3 = ℏω(0)
12 |2⟩⟨2|+ℏω(0)

13 |3⟩⟨3|+ℏΩ12 cos(ω12t) [|1⟩⟨2|+ |2⟩⟨1|]+ℏΩ23 cos(ω23t) [|2⟩⟨3|+ |3⟩⟨2|] .
(179)

The frequencies ω12 and ω23 are just the frequencies of the light fields quasi-resonant
with the transitions |1⟩ ↔ |2⟩ and |2⟩ ↔ |3⟩, respectively, with Rabi frequencies Ω12 and
Ω23. For the ladder configuration, the energy difference betweel levels 2 and 3 is

∆E23 = ℏ(ω(0)
13 − ω

(0)
12 ) = ℏω(0)

23 . (180)

We can thus define the detunings from each transition ∆12 = ω12 − ω
(0)
12 and ∆23 =

ω23 − ω
(0)
23 = ω23 − (ω

(0)
13 − ω

(0)
12 ). We also define the total detuning for the two-photon

excitation δ = ∆12 +∆23 = ω12 + ω23 − ω
(0)
13 .

The state of the atom is now written

|ψ⟩ = c1|1⟩+ c2|2⟩+ c3|3⟩ . (181)

We apply the Schrödinger equation to the evolution of this state, and we get the
system of equations
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dc1
dt

= −iΩ12

2

(
eiω12t + e−iω12t

)
c2 (182)

dc2
dt

= −iΩ12

2

(
eiω12t + e−iω12t

)
c1 − iω

(0)
12 c2 − i

Ω23

2

(
eiω23t + e−iω23t

)
c3 (183)

dc3
dt

= −iΩ23

2

(
eiω23t + e−iω23t

)
c2 − iω

(0)
13 c3 (184)

We place ourselves in the rotating frame with the incoming light via

c′2 = eiω12tc2 (185)

c′3 = ei(ω12+ω23)tc3 (186)

When we replace the coherences by the coherences in the rotating frame in the
dynamical equations, and we make the RWA e±2iω12t ≃ ⟨e±2iω12t⟩ = 0, e±2i(ω12+ω23)t ≃〈
e±2i(ω12+ω23)t

〉
= 0, we get the set of coupled equations

dc1
dt

= −iΩ12

2
c′2

dc′2
dt

= −iΩ12

2
c1 + i∆12 c

′
2 − i

Ω23

2
c′3 (187)

dc′3
dt

= −iΩ23

2
c′2 + iδc′3

5.1.1. Light shifts and two-photon transitions

Let us examine the experimentally relevant case of high intermediate detuning,
|∆12| ≫ |δ|,Ω12,Ω23. In this case, the coefficient c′2 will evolve with a frequency much
higher than the others, and we can perform an adiabatic elimination of that level, finding
the stationary solution for this coefficient as a function of the others, and replacing this
stationary solution in the other dynamical equations. This procedure has already been
used before to obtain the light forces.

If we set dc′2
dt

= 0, we obtain

c′2 =
Ω12c1 + Ω23c

′
3

2∆12

. (188)

Since Ω12

∆12
, Ω23

∆12
≪ 1, the coefficient c′2 will be always very small. In the regime of

intermediate high detuning, the intermediate level is never populated.
The other dynamical equations become
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dc1
dt

= −i Ω
2
12

4∆12

c1 − i
Ω12Ω23

4∆12

c′3

dc′3
dt

= −iΩ12Ω23

4∆12

+ i

(
δ − Ω2

23

4∆12

)
c′3 (189)

We can cast the equations above just like the equations for the Rabi flipping of the
first part of these notes:

iℏ
d

dt

(
c1

c′3

)
=

(
∆E1 ℏΩeff

2

ℏΩeff
2

∆E3 − ℏδ

)(
c1

c′3

)
. (190)

The energy shifts and effective Rabi frequency are given by

∆E1 =
ℏΩ2

12

4∆12

; (191)

∆E3 =
ℏΩ2

23

4∆12

; (192)

Ωeff =
Ω12Ω23

2∆12

. (193)

The energy shifts represent the optical potentials created by the light fields. In this
context, we see them as light shifts of the resonances.

The effective Rabi frequency describes the effective coupling between the two levels.
We see that thetwo light fields can effectively couple the two levels without ever populating
the intermediate one. We call it a two-photon transition. It depends non-linearly in
the intensities of both incoming fields, since the Rabi frequency is proportional to the
product of the individual Rabi Frequencies. In order to resonantly excite the upper level,
we must fulfill now the resonance condition

δ′ = ω12 + ω23 −
(
ω
(0)
13 +

∆E3

ℏ
− ∆E1

ℏ

)
= 0. (194)

5.2. Lambda configuration

For lambda configuration, as shown in Fig. 11 most of the calculation follows similar
lines. The Hamiltonian is the same as in Eq. (179), but now the frequency ω0

13 is equal
to ω0

13 = ω
(0)
12 − ω

(0)
23 . Accordingly,t he detuning to reach resonance from state |1⟩ to state

|3⟩ is given by δ = ∆12 − ∆23. Now, to put ourselves in the rotating frame, we do the
transformation
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Figure 11: 3 level system in lambda configuration.

c′2 = eiω12tc2 ; (195)

c′3 = ei(ω12−ω23)tc3 , (196)

and we end up with the same equations of motion in the RWA as given by Eqs. (187),
with the new definitions for c′3 and δ.

5.2.1. Coherent Raman Transitions

By imposing |∆12| ≫ |δ|,Ω12,Ω23, we perform the adiabatic approximation just as
it has been done before, and we deduce the condition for a two-photon transition between
two low-energy levels via an intermediate upper level. In this context, this transition is
called a coherent Raman transition (which can differ from the definition of Raman
transition used by the solid state community).

5.2.2. Dark states and STIRAP

Now, let us face the dynamics of the levels without considering that ∆12 is large.
First, let us put ourselves in the condition δ = 0, and consider the following linear
combination of levels: 

|g+⟩ =
Ω12 |1⟩+ Ω23e

−iω13t |3⟩√
Ω2

12 + Ω2
23

|g−⟩ =
Ω23 |1⟩ − Ω12e

−iω13t |3⟩√
Ω2

12 + Ω2
23

(197)

The state of the system is written on this new basis as

|ψ⟩ = c1|1⟩+ c2|2⟩+ c3|3⟩

= c1|1⟩+ c′2e
−iω12t|2⟩+ c′3e

−iω13t|3⟩

= c+|g+⟩+ c−|g−⟩+ c′2e
−iω12t|2⟩.

(198)

Replacing the definitions of |g+⟩ and |g−⟩ to the equations, we get
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
c1 =

Ω12 c+ + Ω23 c−√
Ω2

12 + Ω2
23

c′3 =
Ω23 c+ − Ω12 c−√

Ω2
12 + Ω2

23

(199)

Inverting those, we get 
c+ =

Ω12 c1 + Ω23 c3√
Ω2

12 + Ω2
23

,

c− =
Ω23 c1 − Ω12 c3√

Ω2
12 + Ω2

23

(200)

In this new basis, the dynamics equations become

i
λ

∆t

c+c2
c−

 =

 0
√

Ω2
12 + Ω2

23 0√
Ω2

12 + Ω2
23 −∆12 0

0 0 0


c+c2
c−

 (201)

We see that the linear combination |g−⟩ is a level not coupled to the excited state.
Up to now, we have not included decay rates, but if we include it, the excited state can
decay to the levels |g+⟩ and |g−⟩ - after some cycles, the atomic state ends up in the level
|g−⟩ and it will stay there forever. This level is called a dark state of the atom.

There are simple limits in which the dark level assume a simple shape: If Ω12 ≫ Ω23,|g+⟩ → |1⟩ ,

|g−⟩ → e−iω31t |3⟩ .
(202)

In the opposite limit of Ω23 ≫ Ω12,|g+⟩ → e−iω31t |3⟩ ,

|g−⟩ → |1⟩ .
(203)

This allows the effect known as the Stimulated Raman Adiabatic Passage
(STIRAP). If we first turn on the light resonant with the transition |2⟩ → |3⟩ (thus
increasing Ω23 from zero while keeping Ω12 at zero), and then slowly turning on Ω12 whiel
turning off Ω23, we go from Ω23 ≫ Ω12 to Ω12 ≫ Ω23. We will thus transform slowly the
eigenstate |g−⟩ of the system from |1⟩ to |3⟩ efficiently (probability 1 in the limit of slow
passage), without ever populating |2⟩. We can even keep the coherence of a superposition
in this way, since there is no spontaneous emission involved.

5.2.3. Electromagnetic Induced Transparency (EIT)

For both beams close to resonance, and in the regime Ω23 ≫ Ω12, we enter the
regime of Electromagnetic Induced Transparency (EIT). We will call Ω23 = Ωc, the Rabi
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frequency of the coupling beam, and Ω12 = Ωp, the Rabi frequency of the probe beam.
The coupling beam is responsible for making the |1⟩ state to be a dark state, which

means that if the resonance condition δ = 0 is satisfied, the probe light cannot couple
|1⟩ to the excited state |2⟩, and the light will pass by the atomic sample without being
absorbed. This phenomena is called the Electromagnetic Induced transparency
(EIT): the sample is made transparent by the control beam.

In order to derive the width of the transparency window, one needs to solve the
dynamics for the general case of δ not necessarily equal to zero. Then, one can show that
in the regime Γ12 ≫ Ωc ≫ Ωp, where Γ12 is the decay rate from level |2⟩ to level |1⟩, the
transparency window is of width Ωc, as shown in Fig. (12).

Figure 12: EIT transmission spectrum for Γ12 ≫ Ωc ≫ Ωp and ∆23 = 0.

The EIT effect has several interesting applications. First, the transparency window
has its width controllable, with applications for metrology and sensing. Also, close to
the transparency window, the absorption varies fast. This means that the real part of
the electric susceptibility also varies fast, and one can expect very small group velocities
for light. The impressive record of 8 m/s was achieved for a light pulse around the
transparency window of EIT [8].
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