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Motivation & Introduction

▶ The detection of binary black hole and neutron star mergers by the
LIGO-VIRGO-KAGRA (LVK) collaboration has sparked a renaissance in solving the
gravitational two-body problem and computing theoretical waveforms to high
precision.

▶ One of the most useful and fascinating quantities is the radiative (waveform) field1,
1
R
hµν(t, n̂) measured by a detector at a distance R from the source, emitted during

the inspiral/scattering of astrophysical objects.

Figure: Ripples in spacetime discovered by LIGO from a binary black hole merger, Caltech

1LIGO measures the “gravitational wave strain” h(t) = F+(θ, ϕ, ψ)h+(t) + F×(θ, ϕ, ψ)h×(t), where

h+,× = hTT
ij eij+,× and hTT

µν = Λµναβh
αβ .
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Motivation & Introduction

▶ Alongside direct numerical integration of the Einstein field equations,
the post-Newtonian (PN) approximation: Gm/rc2 ∼ v2/c2 ≪ 1.

hµν(ω, n̂) =
∞∑

n=0

1

cn
hPN
µν (ω, n̂)

[Blanchet, Levi, Porto, Sturani, Foffa, ...]

the post-Minkowskian (PM) approximation: Gm
rc2

≪ 1, but v2/c2 ≲ 1.

hµν(ω, n̂) =
∞∑

n=1

GnhPM
µν (ω, n̂)

(Same as perturbative expansion in QFT)
[Westpfahl, Bjerrum-Bohr, Bern+, Parra-Martinez+, Cheung, Bini, Damour, Porto+,
Guevara+, Steinhoff+,Heissenberg, Aoude+, Mogull+, Kosower+,Huang,...]

Figure: Temporal evolution of a binary system, LIGO
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Why Amplitudes?

▶ Computing the waveform field is intrinsically difficult due to the existence of
numerous physical scales that are nonlinearly coupled via general relativity.

▶ We focus on the inspiral phase, where compact objects can be modeled as point
particles within an effective field theory (EFT). [Goldberger, Rothstein]

▶ Weak field perturbation theory is a crucial input, and Amplitudes methods is
demonstrating its potential to surpass traditional classical tools.

▶ Amplitudes are gauge-invariant objects that compactly encode the perturbative
scattering dynamics of point particles in quantum field theory (QFT) and can be
computed efficiently in analytic form.

▶ The motivation is to apply the modern techniques like unitarity cut methods,
integration-by-parts (IBP) reduction, double copy relations, soft factorization
theorems, etc. developed for amplitude calculations in gauge theory and gravity to
problems involving gravitational waves from binary black holes.
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Outline

▶ The application of on-shell scattering amplitudes for deriving classical gravitational
observables has seen a remarkable development in recent years.

▶ One of the most potent formalisms to generate such observables was proposed in a
seminal paper by Kosower, Maybee, and O’Connell (KMOC) which uses scattering
amplitudes to compute a set of asymptotic quantities, whose classical limits are the
observables of interest.

▶ In this talk, I will focus on computing observables in KMOC formalism, such as the
scattering angle/linear impulse or the radiation flux in the hyperbolic scattering of
the two bodies, where PM expansion is applicable2.

▶ We also discuss how soft factorization theorems in scattering amplitudes reveal
universal features of gravitational radiation, such as the memory effects.

2There exist dictionaries that relate gravitational scattering data to observables for bound states in generic
configurations, utilizing Firsov’s formula, the Impetus formula, and a sequence of analytic continuations. [Cho,
Kälin,Porto]
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Introduction to KMOC Formalism

Introduction to KMOC Formalism

▶ Prior to KMOC, treating gravity as an EFT had already emphasized that scattering
amplitudes, including loop amplitudes, encode the classical gravitational potential
between two masses. [Donoghue, Holstein]

▶ KMOC formalism is a framework to compute classical observables such as the
scattering angle, radiative flux carried by electromagnetic or gravitational field using
perturbative amplitudes in large impact parameter (b) or large J = mb regime.

▶ The basic idea is to take wave packets for incoming (classical) particles, evolve them
using quantum S-matrix operator and then compute expectation value of an
observable in the final state.

⟨∆O⟩ = lim
ℏ→0

ℏκO
[
in⟨Ψ|S†ÔS|Ψ⟩in − in⟨Ψ|Ô|Ψ⟩in

]
= lim

ℏ→0
ℏκO

[
in⟨Ψ|i[Ô, T ]|Ψ⟩in + in⟨Ψ|T †[Ô, T ]|Ψ⟩in

]
,

where the factor of ℏκO ensures ⟨∆O⟩ ∼ ℏ0 i.e. classical scaling.

▶ The S-matrix-governed evolution sums over all possible out states and thus
characterizing this framework as an “in-in” formalism.
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Introduction to KMOC Formalism

KMOC Formalism

▶ |Ψ⟩in is the incoming two particle state in which the particles are separated by
impact parameter b and their momenta localised around p1, p2. ϕi(pi)s are the
minimum uncertainty wave packets (in momentum space)

|Ψ⟩in =

∫ ∏
i

[
d̂4piδ̂

(+)(p2i −m2
i )ϕi(pi)e

ib·pi/ℏ
]
|p1p2⟩

▶ During a small angle (large impact parameter) scattering, the semi-classical in-state
evolves to a semi-classical out-state where the momenta are peaked around
pi +O( 1

b
) as b → ∞.

▶ This is naturally incorporated in KMOC by re-scaling all the massless momenta and
replacing them with their wave numbers i.e the exchange momenta (qi = q̄iℏ). The
ℏ is also restored in the couplings as e/

√
ℏ (QED), κ/

√
ℏ (gravity), where

κ =
√
32πG.

▶ Quantum-mechanical expectation values reproduce their classical counterparts only
when the wave-packet spread falls within this ‘Goldilocks’ regime:

lc ≪ lw ≪
√

−b2 .
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Introduction to KMOC Formalism

Example: 2-2 scattering in scalar QED

▶ Let us compute the total change in the momentum (linear impulse) of one of the
particles — say particle 1 — during the scattering, where O = Pµ

▶ Using the on-shell completeness relation, unitarity of the S-matrix and plugging in
the expression for the initial state,

⟨∆pµ1 ⟩ = i

∫
d̂
4
q δ̂(2p1 · q + q

2
)δ̂(2p2 · q − q

2
) e

iq·b/ℏ
q
µA4(p1, p2 → p1 + q, p2 − q)

+

∫
d̂
4
q δ̂(2p1 · q + q

2
)δ̂(2p2 · q − q

2
) e

iq·b/ℏ∑
X

∫ ∏
i=1,2

d̂
4
wi δ̂(2pi · wi + w

2
i )

×wµ
1 δ̂

(4)
(w1 + w2 + rX)

×A(p1, p2 → p1 + w1, p2 + w2, rX)A∗
(p1 + q, p2 − q → p1 + w1, p2 + w2, rX) .

Figure: (1) Figure: (2)
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Introduction to KMOC Formalism

Classical observables

▶ The classical observables are then expressed in terms of perturbative amplitudes.
The LO classical linear impulse is given by

∆pµ =
ℏ3

4
⟨⟨
∫

d̂4q̄δ̂(p1 · q̄)δ̂(p2 · q̄)eiq̄·biq̄µ A4(p1, p2 → p1 + ℏq̄, p2 − ℏq̄)⟩⟩ |ℏ→0 ,

where ⟨⟨f(p1, p2, q . . .)⟩⟩ denotes the integration over the minimum uncertainty
wave packets which localizes the momenta onto their classical values.

▶ Similarly, to leading order in the coupling, the radiative gauge field is given by

R(0)
cl (k̄) = lim

ℏ→0

ℏ3/2

4

∏
i=1,2

∫
d̂4q̄iδ̂(pi · q̄i)δ̂(4)(q̄1 + q̄2 − k̄)eib·q̄2

× Ā(0)
5 (p1 + ℏq̄1, p2 + ℏq̄2 → p1, p2, ℏk̄) .

1̄

2̄ 2

1

k

Figure: The five-point amplitude appearing in the radiation kernel at leading order.
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Introduction to KMOC Formalism

Classical physics from “Loops”

▶ For finite classical contributions from loops, the massless momenta q scaling also
forces the same scaling for the loop momenta automatically, i.e. (li = ℏl̄i) such that
l̄ is fixed, as the l ≫ q regime leads to contact/quantum contributions.

▶ But why do loops contribute to classical physics?:
Some regions of loop momentum where internal propagators go on shell remove the
naive ℏ suppression. Those on-shell conditions encode long-distance propagation and
radiation, which are classical.

▶ Tree-level classical: exchange of a long-range field (Coulomb, Newton)
Loop-level classical: corresponds to iterated classical propagation, like the field going
out and then rescattering.

▶ KMOC formalism systematically identifies these so-called “classical regions” prior to
performing the loop integration.
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Introduction to KMOC Formalism

Advantages of KMOC Formalism

Figure: Relevant 1-loop diagrams in scalar QED

▶ For a diagram to contribute classically, it must contain at least one internal matter
line in the loop.

▶ The power of the formalism is that the classical limit is taken at the level of loop
integrands, before evaluating the full amplitude. This drastically simplifies the
quantum computation as only a subset of Feynman diagrams contributes in this
limit.

▶ Additionally, the radiation-reaction effects are naturally inbuilt within the framework
unlike the traditional formulations of classical physics, where one must include the
ALD force (MiSaTaQuWa self-force in gravity) by hand in order to enforce
momentum conservation.

⟨∆pµ1 ⟩+ ⟨∆pµ2 ⟩ = −in⟨Ψ|T †[Kµ, T ]|Ψ⟩in = −in⟨Ψ|T †KµT |Ψ⟩in
= −⟨kµ⟩ = −Pµ

rad .
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Introduction to KMOC Formalism

Some interesting objects

Figure: Classical solutions related by EM duality, double copy and the NJ shift

▶ Electromagnetic duality is a symmetry in the classical equations of electromagnetism
(Maxwell’s equations) that relates the electric field (E) and the magnetic field (B).

▶ Gravity amplitudes can be realized as a “double copy” of gauge theory amplitudes.

Mgauge ×Mgauge ∼ Mgravity

Classical double copy: Relations between classical solutions of Yang-Mills theory and gravity.

▶ The Newman-Janis (NJ) shift is a complex coordinate transformation that maps the
Schwarzschild solution to the Kerr solution.

ϕSchw(r + ia cos θ) = ϕKerr(r)

Here a is the ring radius of the Kerr black hole.

▶ This mapping has now been generalized to an algorithm that is used to generate rotating
solutions from static solutions [Erbin].
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Introduction to KMOC Formalism

The NJ exponentiated amplitudes

▶ The NJ algorithm on the space of classical solutions in GR and EM could be used in
the space of scattering amplitudes to map an amplitude with external scalar particles
to an amplitude associated with the infinite spin limit of certain massive spin S
amplitudes [Arkani-Hamed, Huang, Huang].

▶ The minimal coupling of these particles to the gravitational or Maxwell field is
equivalent to the classical coupling of the Kerr black hole with linearized gravity or
the

√
Kerr charged object3 with the electromagnetic field [Guevara, Ochirov, Vines].

▶

A±
3,
√
Kerr

= QA±
3,scalar e

±q̄·a2

as S → ∞ and ℏ → 0 with Sℏ being fixed.

▶ For Kerr BH,

A±
3,Kerr = κ(A±

3,scalar)
2 e±q̄·a2 .

▶ This exponentiation was identified as the NJ algorithm at the level of 3-point
on-shell amplitudes [Arkani-Hamed, Huang, O’Connell].

3It is a solution of the free Maxwell’s equations with infinite multipole moments expressed solely in terms of
the charge, mass and angular momentum of the classical object (same as the no-hair theorem for BHs)
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Results: on-shell+ NJ+ KMOC

Results

▶ Using the 3-point minimally-coupled exponentiated-spin amplitudes, the linear
impulse, ∆pµ1 for the scalar particle in the background of a

√
Kerr object was

obtained from a scalar-scalar scattering by complexifying the impact parameter with
the ring radius a2 [Arkani-Hamed, Huang, O’Connell].

∆pµ1,scalar(b)
NJ:b→b+ia2−−−−−−−−−→ ∆pµ

1,
√
Kerr

(b, a2) = Re [∆pµ1,scalar(b+ ia2)]

=
Q1Q2

2πγβ
Re

[γ(b+ ia2)µ − iϵµ(b+ ia2, u1, u2)

(b+ ia2)2

]
.

▶ The results for the Kerr black hole can then be obtained via double-copy methods:

∆pµ1,Kerr = −
2m1m2G

γβ
Re

[ (2γ2 − 1)(b+ ia2)µ − 2iγ ϵµ(b+ ia2, u1, u2)

(b+ ia2)2

]
.

▶ We used the NJ algorithm on the space of scalar QED amplitudes and computed classical
observables such as the radiative gauge field emitted by the scalar particle and the net
angular momentum impulse for scalar-

√
Kerr scattering, to all order in spin at 1PL via the

KMOC formalism. [SA, Manna, Manu]
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Soft factorization theorems

Soft radiation

▶ In both PN and PM expansion, we compute radiation emitted from a source which
is constrained by low velocities or large separations.

▶ But there is a different perturbative expansion which leads to different insights
about gravitational radiation emitted in a scattering process.

▶ Consider a detector placed at infinity whose frequency band (ω, ω + dω) is in the
infrared: ω ≪ ωc. The radiation measured by such a detector is called soft radiation.

▶ Soft expansion is remarkably constrained in terms of momenta and the spin of the
initial and final objects.

▶ At any given order in soft expansion, the radiative field is exact to all orders in PM
and PN expansion. It is hence a non-perturbative probe and offers remarkable
insights into universal modes of gravitational radiation in classical scattering.
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Soft factorization theorems

Classical soft theorems in D ≥ 4 dimensions

▶ For a generic gravitational scattering, the leading behavior of the radiative field long
before and long after the main burst of radiation reaches the detector—admits
universal expressions and is given by the classical soft theorems:

hµν(ω, r, n̂) =
1

r
D−2

2

eiωr

[ ∞∑
N=−1

ωN hN
µν(n̂) +

∞∑
m=0

ωm (logω)m+1 hlog m
µν (n̂)

+
∑

N,M|M−N>−1

ωM (logω)N h
log(N,M)
µν (n̂)

]
.

[Laddha,Saha,Sahoo,Sen]

▶ Universality: If a term in the soft expansion is independent of the details of the
scattering and only depends on the linear momenta, angular momenta, and spins of
the scattering objects, we call it universal.

▶ The leading term, h−1
µν (n̂) is the displacement memory and is universal in all

dimensions. It is also independent of the spin of the objects and is an observable. It
measures (after passage of gravitational wave) a permanent physical change in the
asymptotic metric at future null infinity I+ [Zeldovich, Thorne, Christodolou,
Garfinkle,...].

h−1
µν (n̂) =

∑
i∈(in+out)

pi,µpi,ν

pi · n̂
+

∫
S2

d2n̂′Aµ(n̂′)Aν(n̂′)

A(n̂′) · n̂
.

17 / 29



Soft factorization theorems

Logarithmic soft theorems

▶ Blue terms exist only in D = 4 and are shown to be universal. The first term in this
series is known as tail to the memory.

▶ Universality of these coefficients is proved in a series of papers. These are known as
the Log soft theorems [Laddha, Sahoo, Sen]. They depend only on the incoming and
outgoing momenta and angular momenta of the scattering objects.

▶ It has been conjectured that the universality extends to all m [Sahoo,Sen] and a
specific formula for the coefficient of ωm(logω)m+1 terms have been put forward in
the case of 2− 2 scattering [Alessio, Di Vecchia, Heissenberg].

▶ Tail contributions to the memory may become observable in future
gravitational-wave detectors. They could also help distinguish binary black-hole
mergers from other types of mergers, since tail terms are absent in the former.

18 / 29



Soft factorization theorems

Spin-memories

▶ The sub-leading term, h0
µν(n̂) is universal in D > 4. In D = 4, this term is

completely fixed by the incoming and outgoing momenta and angular momenta of
the initial and final objects respectively. It’s called the spin-memory.

h0
µν(n̂) =

∑
i∈(in+out)

pi,(µJi,ν)ρn̂
ρ

pi · n̂
+

∫
SD−2

dD−2n̂′Aµ(n̂′)Bνρ(n̂′)n̂ρ

A(n̂′) · n̂
,

where Ji is the classical angular momentum of the i-th object.

▶ We then have an infinite tower of higher-spin memories, hN
µν(n̂) for N ≥ 1 that are

non-universal.

▶ Finally, the third family (red terms) encapsulates the logarithmic terms which (for a
given N) are sub-leading relative to the corresponding leading log soft factors.

▶ In the (retarded) time domain, the leading log terms decay as 1
u
, log u

u2 ,

· · · (log u)m

um+1 as u → ∞.

▶ The physical origin of all the logarithmic soft modes is the long-range ( 1
r
)

interaction between the scattering states.

19 / 29



Soft factorization theorems

From S-matrix to classical soft theorems

▶ Soft universality of gravitational S-matrix:

MN+1(p1, · · · , pn, ωn̂) =
∑

i∈(in+out)

[ 1
ω

pi,µpi,ν

pi · n̂
+

pi,(µJi,ν)ρn̂
ρ

pi · n̂

]
MN (p1, · · · , pn) +O(ω) .

[Weinberg], [Cachazo, Strominger], [Laddha, Sen]

▶ As KMOC proved, taking ℏ → 0 limit as early as possible in the computation of
expectation value, one can use the tools of scattering amplitudes to compute
classical observables efficiently (for perturbative scattering).

▶ Classical radiative field from KMOC:

hµν(ω, n̂) = lim
ℏ→0

⟨in|S†ĥµν(ωn̂)S|out⟩ ≈ lim
ℏ→0

MN+1(p1, · · · , pn, ωn̂)

▶ From D > 4 to D = 4: The logarithmic-drag is specific to D = 4 and is intrinsically
tied to the fact that S-matrix is IR divergent in D = 4. The asymptotic trajectory:

xµ(t)||t|→∞ = bµ +
pµ

m
|t|+ Cµ log (|t|) .

So the sub-leading soft radiation contains a log (|t|) → log (ω−1) term in D = 4. Later this
was rigorously proved using asymptotic analysis of EOMs, valid for both large
impact-parameter scattering as well as mergers [Saha, Sahoo, Sen].
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Soft factorization theorems

Factorization theorems

▶ The most fascinating part of the story is the soft theorems for gravitational
amplitudes. In D = 4,

MN+1(p1, · · · , pn, k)
MN (p1, · · · , pn)

=
1∑

N=−1

ωN (logω)N+1 Slog (N)(p1, · · · , pn, k̂) [Sahoo,Sen]

▶ n = −1 is the Weinberg soft graviton theorem. n = 0, 1 are loop exact soft factor
and have been computed in a series of papers [Sahoo,Sen].

▶ Classical limit of the Weinberg soft theorem is the displacement memory effect
[Laddha,Sen] [Bautista, Guevara].

▶ Classical limit of the first quantum log soft theorem is tail to the memory to O(κ5)
[Athira, Ghosh, Laddha, Manu] [Alessio, Di Vecchia, Heissenberg].
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Soft factorization theorems

(Sub)n-leading soft theorems

▶ These theorems reveal the extent to which a gravitational amplitude factorizes when
one of the gravitons becomes soft compared to other external momenta.

▶ For a generic theory of gravity with arbitrary matter coupling, the (sub)n-leading
soft graviton theorem can be written as [Hamada,Shiu]

lim
ω→ 0

∂n
ω [ωM5(p̃1, p̃2 → p1, p2, k)] = ŜnM4 + Bn(p1, p2, p̃1, p̃2, k̂)M4

+Rn(p1, p2, p̃1, p̃2, k̂) ,

▶ Bn is the non-universal part of the factorization formula that depends on the
irrelevant three-point couplings in the theory [Elvang,Jones,Naculich].

▶ Rn ̸= 0∀n ≥ 3 is the so-called remainder term that spoils factorization.

▶ How do the higher-order tree-level (sub)n-leading soft graviton theorems constrain
the gravitational scattering?
We prove that despite their limitations, the (sub)n-leading soft theorems can
capture all the logarithmic soft factors in the limit of vanishing deflection [SA].
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Soft factorization theorems

Gravitational scattering of massive spinless particles

▶ We consider massive scalars minimally coupled to gravity and analyze five-point scattering
amplitude in which two scalar particles with momenta p̃1, p̃2 scatter into p1, p2 and a
graviton of momentum k with the on-shell conditions p2i = p̃2i = m2

i .

q2

2

2̄

1

1̄k

I

q2

2

2̄

1

1̄

k

II

q2

2

2̄

1

1̄k

III

q1

2

2̄

1

1̄k

IV

q1

2

2̄

1

1̄

k

V

q1

2

2̄

1

1̄k

VI

q1q2

2

2̄

1

1̄k

VII

Figure: Tree-level five-point amplitudes for gravitational scattering of massive particles

▶ The remainder terms do not contribute to the logarithmic contributions that arise in the
classical limit.

▶ In the deflection less limit (|b| → ∞) such that ωb is fixed, all the log terms of the form
(ωb)m log (ωb)|m ≥ 1 survive and can be completely determined by the (sub)n-soft
“factorization” theorems for tree-level gravitational amplitudes.
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IR-triangle

Introduction to the IR-triangle

▶ Each term in the soft expansion of the radiative field is a field on the sphere at
null-infinity.

▶ The fact that a specification of the asymptotic data completely fixes these terms
independent of the gravitational dynamics is striking.

▶ Can we derive the universality of the terms in the soft expansion by simply studying
the property of gravitational physics at the boundary?

▶ Asymptotically flat space-times (AFS): Class of spacetimes in which gravitational
radiation peels off as a polynomial in 1/R so that the spacetime asymptotes to a
flat space-time.

▶ In flat spacetime, the metric on S2 at null infinity, qAB ≈ dθ2 + sin2 θ dϕ2. When
gravitational waves arrive, the metric gets disturbed:

qAB → qAB +
1

r
CAB(u, θ, ϕ) ,

where CAB is the shear field that characterizes the free radiative data at null infinity.
The displacement memory effect is precisely this permanent change in the shear at
early and late retarded times u.
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IR-triangle

IR-triangle

▶ As the spacetime is flat at null-infinity, spacetime translations are a symmetry.
Bondi, Matzner, and Sachs (BMS) realized that even if we consider more general
translations of u, then the geometry asymptotes to a flat metric at null infinity.

▶ Super-translations:

u → u+ f(θ, ϕ)

CAB → CAB + f∂uCAB + ∂A∂Bf .

▶ The displacement memory effect can be re-written as the conservation law of the
supertranslation charges [Strominger]: QI+ [f ] = QI− [f ] .

▶ We thus see that the super-translation symmetry, displacement memory effect and
the Weinberg soft graviton theorem are three facets of the same universal abstract
object (the first IR-triangle)

Figure: The IR-triangle
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Conclusions and Outlook

Conclusions

▶ We saw that unlike the usual path of computing the classical observables by solving
the EOMs iteratively, one can define these observables in the QFT and compute
them efficiently in terms of perturbative amplitudes.

▶ The power of the KMOC formalism is that the classical limit is taken as early as
possible in the full amplitude. This drastically simplifies the quantum computation
as only a subset of Feynman diagrams contributes in this limit.

▶ Additionally, the radiation-reaction effects are naturally inbuilt within the framework.

▶ We saw that the infinite tower of the low-frequency radiative modes is an interesting
class of non-perturbative radiative observables whose analytic form can be used to
probe infrared aspects of classical and quantum gravitational scattering.

▶ These modes can be efficiently computed from the classical limit of the quantum
soft theorems.

▶ We also saw that the asymptotic symmetries, memory effects, and the quantum soft
theorems are three facets of the same IR-triangle.
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Conclusions and Outlook

Outlook

▶ Since the relationship between classical and quantum soft theorems is
non-perturbative and is valid regardless of the nature of hard scattering, one may
compute the radiative field at null infinity to incorporate large deflection scattering
processes in a different perspective in KMOC approach [SA, Laddha, Manna, Manu].

▶ A natural generalization of the program is to compute classical gravitational
observables for the Kerr black hole at higher PM orders, including radiation-reaction
effects. These involve the Kerr-Compton amplitudes [Cangemi, Chiodaroli,
Johansson, Ochirov, Skvortsov] and using double-copy methods and tools from
BHPT.

▶ There is an infinite dimensional enhancement of the SL(2, C) on sphere at infinity,
“super-rotations”. Together with supertranslations and diff(S2), they form a
Generalized BMS group [Campiglia, Laddha].
Tail to the memory ↔ Log soft theorem ↔ conservation of super-rotation charges
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Conclusions and Outlook

Outlook

▶ The existence of higher-order tree-level soft theorems has been recently linked to the
discovery of the w1+∞ asymptotic algebra [Freidel, Pranzetti,Raclariu] [Guevara,
Himwich,Pate,Strominger] [Geiller]. Our analysis can potentially reveal the link
between higher spin asymptotic symmetries and a subset of logarithmic terms in the
soft expansion of gravitational radiation.

▶ Like Love numbers of black holes, the vanishing of tail to the memory in a black
hole merger, perhaps implies some deeper structure of gravitational scattering.

▶ Observables for bound states from amplitudes?

▶ Soft theorems for bound orbits?
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Conclusions and Outlook

Current and Future directions

Black hole/

GW Physics

(Classical)
Soft

theorems

NJ
algorithm

Double
copy

KMOC
Formalism

Asymptotic Symmetries

Factorization theorems

IR-△

CFT2

Heun fncs.

N = 2
SUSY

S-matrix
IR divergence

Superclassicality

Figure: Current and future directions of my research work.
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Conclusions and Outlook

Thank You!
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Backup slides

Effective action that reproduces the leading interactions of a Kerr Black hole
[Levi,Steinhoff],[Vines]:

Sint = m

∫
dτ
[ ∞∑
n=1

(−1)n

(2n)!
CES2n(a · ∇)2n−2Rαβµνu

αaβuµaν

+
∞∑

n=1

(−1)n

(2n+ 1)!
CBS2n(a · ∇)2n−1 ∗Rαβµνu

αaβuµaν
]
x=r(τ)

.

with CES2n = 1 and CBS2n = −1.
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Radiation kernel

▶ The scaling of massless momenta makes the KMOC formalism particularly effective
for calculating radiative observables at null infinity I+. One of such observables is
the radiative gauge field.

▶ To obtain radiative gauge field, consider expectation value of photon momentum
operator

⟨K̂µ⟩ = ⟨Ψ|S†K̂µS|Ψ⟩ = ⟨Ψ|T †K̂µT |Ψ⟩ , K̂µ =
∑
h=±

∫
dϕ(k) kµ a†

h(k) ah(k)

▶ In the classical limit,

⟨K̂µ⟩cl =
∑
X

∫
dϕ(X̄)k̄µ

X |Rcl(X̄)|2 .

▶ Here Rcl(X) defines the radiative gauge field. To leading order in the coupling with
single photon emission,

R(0)
cl (k̄) =

ℏ3/2

4

∏
i=1,2

∫
d̂4q̄iδ̂(pi · q̄i)δ̂(4)(q̄1 + q̄2 − k̄)eib·q̄2

× Ā(0)
5 (p1 + ℏq̄1, p2 + ℏq̄2 → p1, p2, ℏk̄) .
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▶ The starting point is formula for the linear impulse, computed using the KMOC
formalism,

∆pµ1 =
ℏ3

4

∫
d̂4q̄δ̂(2p1 · q̄)δ̂(2p2 · q̄)eiq̄·biq̄µ A4(p1, p2 → p1 + ℏq̄, p2 − ℏq̄)|ℏ→0 ,

(1)

where p1 and p1 + q are the momenta of the scalar and p2 and p2 − q are the
momenta of the massive higher spin particle.

▶ To construct the 4-pt amplitude, we will glue the corresponding 3-pt amplitudes for
the scalar as well as the higher spin particles. The 3-pt amplitudes for a spinning
particle are

h = +1 : i
√
2Q2 x

⟨22′⟩2S

m2S−1
2

; h = −1 : i
√
2Q2

1

x

[22′]2S

m2S−1
2

, (2)

where x = ⟨ζ|p2|q]
m2⟨ζq⟩

and S is the spin of the particle, with S = 0 gives the 3-pt
amplitudes of a scalar minimally coupled to the photon.
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▶ Since q is small, the spinor |2′⟩ is only a small boost of the spinor |2⟩. Taking
account of the on-shell relation 2p2 · q = q2 ≃ 0,

1

m2
⟨22′⟩ = I+ 1

2Sm2
q̄ · s2 , (3)

where sµ2 is the Pauli-Lubanski pseudovector associated with a spin S particle:
sµ = Sℏ

m2
⟨2|σµ|2].

▶ We now take the limit S → ∞ and ℏ → 0 with Sℏ fixed. The amplitudes become

h = ±1 : iQ2

√
2m2 x±1e±q·a2 , (4)

where a2 = s2/m2.

▶ We now use the expression for x and xx̄ = 1 to get the classical limit of the
amplitude

A4(p1, p2 → p1 + ℏq, p2 − ℏq)|ℏ → 0 =
Q1Q2m1m2

ℏ3q2
pµ1
(
ϵ+µ ϵ

−
ν e

q·a2 + ϵ−µ ϵ
+
ν e

−q·a2
)
pν2

=
Q1Q2m1m2

ℏ3q2
(
e−weq·a2 + ewe−q·a2

)
,

(5)

where in going from the first equality to the second we have used

x11′

x22′
= ew with coshw = u1 · u2 (6)

with w being the rapidity.
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q

2a2

2′a2

1

1′

Figure: The four-point scalar -
√
Kerr amplitude with photon exchange. Here ‘a2’ denotes the

rescaled spin of the
√
Kerr particle.

▶ Plugging this amplitude into the linear impulse formula and using the identity,

qµ sinhw = iϵµνρσu
ν
1u

ρ
2q

σ , (7)

the linear impulse can be written as

∆pµ1 = Q1Q2Re

∫
d̂4qδ̂(u1 · q)δ̂(u2 · q)

i

q2
[
(qµ coshw − iϵµνρσu1νu2ρqσ)e

−iq·(b+ia2)] .

(8)

Hence, we see that the NJ shift manifests itself in the simple shift of the impact
parameter, b → b+ ia2. This tells us that the linear impulse for the scalar particle in
the background of a

√
Kerr object can be obtained from a scalar-scalar scattering by

simply complexifying the impact parameter.
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LO Angular Impulse

▶ The leading order orbital angular impulse in the KMOC formalism is given by

∆Lµν
i =

ℏ2

4

∫
d̂4q̄1d̂

4q̄2δ̂(p1 · q̄1)δ̂(p2 · q̄2)e−i(b·q̄2)
[(

p̃i ∧
∂

∂p̃i

)µν

+

(
pi ∧

∂

∂pi

)µν]
δ̂(4)(q̄1 + q̄2) A4(p1, p2 → p̃1, p̃2) ,

(9)

where pi’s are initial momenta and we denote the final momenta as p̃i = pi + ℏq̄i. Here
A4(p1, p2 → p̃1, p̃2) is the deformed four-point scalar−

√
Kerr scattering amplitude.

▶ After a linear transformation (pi, p̃i) → (pi, qi), the orbital angular impulse is given by

∆Lµν
i =

ℏ2

4

∫
d̂4q̄1d̂

4q̄2δ̂(p1 · q̄1)δ̂(p2 · q̄2)e−ib·q̄2 [(pi ∧ ∂pi )
µν + (q̄i ∧ ∂q̄i )

µν ]{
δ̂(4)(q̄1 + q̄2)A4(p1, p2 → p1 + ℏq̄1, p2 + ℏq̄2)

}
. (10)

For the scalar particle, we do integration by parts on the second term in the first line in
eq.(10) and integrate over q̄2 to obtain

∆Lµν
1 = ∆Lµν

1,I +∆Lµν
1,II , (11)

with

∆Lµν
1,I =

ℏ2

4

∫
d̂4q̄eiq̄·bδ̂(p1 · q̄)δ̂(p2 · q̄)

(
p1 ∧

∂

∂p1

)µν

A4(p1, p2 → p1 + ℏq̄, p2 − ℏq̄)

∆Lµν
1,II = −

ℏ2

4

∫
d̂4q̄eiq̄·b δ̂

′
(p1 · q̄) δ̂(p2 · q̄)(q̄ ∧ p1)

µν A4(p1, p2 → p1 + ℏq̄, p2 − ℏq̄) .
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▶ We use4 ∂
∂p

µ
j
pαi = δji δ

α
µ , ∂pµ1

aα2 = 0.

▶ Summing the two expressions ∆Lµν
1,I and ∆Lµν

1,II , we obtain the orbital angular impulse of

the scalar particle

∆Lµν
1 = Q1Q2

∫
d̂4q̄δ̂(p1 · q̄)δ̂(p2 · q̄)

eiq̄·b

q̄2

[
(p1 ∧ p2)

µν cosh(a2 · q̄)
(
1−

(p1 · p2)2

D

)
+ i

sinh(a2 · q̄)
(a2 · q̄)

(
p
[µ
1 ϵν](p2, a2, q̄) +

p1 · p2
D

ϵ(p1, p2, a2, q̄)(p2 ∧ p1)
µν

)
+

m2
2

D
(a2 · p1)(p1 ∧ q̄)µν {(p1 · p2) sinh(a2 · q̄) + iYϵ(p1, p2, a2, q̄)}

]
,

(13)

where Y =
[
cosh (a2·q̄⊥)

(a2·q̄⊥)
− sinh (a2·q̄⊥)

(a2·q̄⊥)2

]
. This expression matches with the answer

obtained through solving classical EOMs perturbatively.

4The 4-point amplitude depends on the external momenta of the scattering particles as well as the
(classical) spin vector aµ2 . It is related to the spin tensor Sµν

2 via aµ2 = 1

2m2
2
ϵµνρσp2νS2ρσ . It is rather

natural to interpret Sµν
2 as the independent spin tensor which can be thought of as an “intrinsic” spin angular

momentum of a classical particle.
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▶ The orbital angular impulse for the scalar particle to linear order in spin written in terms of
Sµν
2 is

∆Lµν
1 =

Q1Q2

2π
√
D

[ 1

β2γ2
(p2 ∧ p1)

µν log |µ1b|

+
1

b2

(
p
[µ
1 S

ν]ρ
2 bρ + (p2 ∧ p1)

µν (p1 · p2)
D

Sρσ
2 p1ρbσ

)]
+O(S2

2) , (14)

where µ1 is the IR cutoff.

▶ For the
√
Kerr particle, the integral of (10) is rewritten as follows

∆L
µν
2 = −(b ∧ ∆p2)

µν
+ ∆L

µν
2,I + ∆L

µν
2,II , (15)

where

∆L
µν
2,I =

ℏ2

4

∫
d̂
4
q̄e

iq̄·b
δ̂(p1 · q̄)δ̂(p2 · q̄)

(
p2 ∧

∂

∂p2

)µν

A4(p1, p2 → p1 + ℏq̄, p2 − ℏq̄) ,

∆L
µν
2,II = −

ℏ2

4

∫
d̂
4
q̄e

iq̄·b
δ̂(p1 · q̄) δ̂

′
(p2 · q̄) (q̄ ∧ p2)µν A4(p1, p2 → p1 + ℏq̄, p2 − ℏq̄) .

∆p
µ
2 =

ℏ2

4

∫
d̂
4
q̄δ̂(p1 · q̄)δ̂(p2 · q̄) eiq̄·b (−iq̄µ) A4(p1, p2 → p1 + ℏq̄, p2 − ℏq̄) . (16)
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▶ The evaluation of ∆Lµν
2,I is rather subtle as for any function f(a2, q̄) we obtain

terms involving ∂
∂p

µ
2
f(a2, q̄) = − 1

2m2
2

∂f(a2,q̄)
∂aα

2
ϵµ

αρσS2ρσ, where we have used

∂aα
2

∂p
µ
2
= 1

2m2
2
ϵαβρσS2ρσδµβ .

▶ We simply evaluate the impulse to linear order in Sµν
2 .

∆L
µν
2 = Q1Q2

∫
d̂
4
q̄δ̂(q̄ · p1)δ̂(q̄ · p2)eiq̄·b

1

q̄2

[ 1

β2γ2
(p1 ∧ p2)µν − (b ∧ q̄)µν

(S
ρσ
2 p1ρq̄σ)

+ i(p1 ∧ p2)µν (p1 · p2)
D

S
ρσ
2 p1ρq̄σ

]
=
Q1Q2

2π
√
D

[ 1

β2γ2
(p1 ∧ p2)µν

log |µ2b| −
1

b2

(
b
[µ
S

ν]ρ
2 p1ρ − (p1 ∧ p2)µν (p1 · p2)

D
S

ρσ
2 p1ρbσ

)]
,

(17)

where µ2 is the IR cutoff.
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Conservation of Angular Momentum

▶ The spin kick ∆aµ2 imparted on the
√
Kerr particle with mass m2 and ring radius a2 in a

scalar-
√
Kerr scattering to leading order in coupling using the KMOC formalism is given by:

∆aµ2 =
iℏ2

4

∫
d̂4q̄δ̂(p1 · q̄)δ̂(p2 · q̄)eiq̄·b

{ [
aµ2 (p2),A4

]
+

ℏ
m2

(a2 · q̄)uµ
2A4

}
. (18)

Using the NJ deformed 4-point amplitude, we have

∆a
µ
2 =

e2

m2

Re

∫
d̂
4
q̄δ̂(q̄ · u1)δ̂(q̄ · u2)

i

q̄2
e
−iq·(b+ia2)

[
u
µ
1 (a2 · q̄) − q̄

µ
(a2 · u1) − iϵ

µ
(u1, a2, q̄)

]
.

(19)

This matches with the spin kick obtained using classical equations of motion.

▶ Using the dual relation, we have ∆Sµν
2 = ϵµνρσ∆p2ρa2σ + ϵµνρσp2ρ∆a2σ . Therefore, we

obtain the following expression for spin angular impulse

∆Sµν
2 = −Q1Q2

∫
d̂4q̄δ̂(q̄ · u1)δ̂(q̄ · u2)

eiq̄·b

q̄2

[
cosh (a2 · q̄)

{
iu

[µ
1 ϵν](q̄, u2, a2)

− iq̄[µϵν](u1, u2, a2)
}
+ sinh(a2 · q̄)

{
u
[µ
2 u

ν]
1 (a2 · q̄)− u

[µ
2 q̄ν](a2 · u1) + γa

[µ
2 q̄ν]

}]
.

(20)

10 / 30



▶ At linear order in Sµν
2 , the spin angular impulse can be evaluated.

∆S
µν
2 = −iQ1Q2

∫
d̂
4
q̄δ̂(p1 · q̄)δ̂(p2 · q̄)eiq̄·b

1

q̄2

[
p
[µ
1 S

ν]σ
2 q̄σ − q̄

[µ
S
ν]σ
2 p1σ

]
+ O(S

2
2) (21)

∆S
µν
2 =

Q1Q2

2π
√

D b2

(
b
[µ

S
ν]α

p1α − p
[µ
1 S

ν]α
bα
)
. (22)

▶ We now have all the expressions to compute the total angular impulse for the the
scalar-

√
Kerr scattering to linear order in spin. This is given by the sum of eqs.(14),(17) and

(21). We obtain the following result

∆Jµν =
Q1Q2

2π
√
D

1

β2γ2
(p1 ∧ p2)

µν log
∣∣∣µ2

µ1

∣∣∣+ δµνscalar-scoot = 0 , (23)

where

δµνscalar-scoot = −
Q1Q2

2π
√
D

1

β2γ2
(p1 ∧ p2)

µν log
∣∣∣ τ1
τ2

∣∣∣ . (24)

The IR cutoffs are related to the proper times of the two particles via
µ2
µ1

= τ1
τ2

V eneziano,et al.”22,Bhardwaj,Lippstreu”22. Hence, the total angular momentum

for scalar -
√
Kerr scattering is conserved, to linear order in spin.
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NJ exponentiation [Arkani-Hamed, Huang, O’Connell]

Figure: NJ exponentiation

Figure: NJ exponentiated amplitude
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Gravitational scattering of massive spinless particles

▶

M̄µν
5 [p1 + ℏq̄1, p2 + ℏq̄2 → p1, p2,, ℏk̄]

= δ̂(4)(q̄1 + q̄2 − k̄)Āµν
5 [p1 + ℏq̄1, p2 + ℏq̄2 → p1, p2, ℏk̄] .

▶ The stripped amplitude is given by

Āµν
5 [p1 + ℏq̄1, p2 + ℏq̄2 → p1, p2,, ℏk̄] = −

κ3m2
1m

2
2

ℏ2
[4PµP ν

q̄21 q̄
2
2

+
2γ

q̄21 q̄
2
2

(
QµP ν +QνPµ

)
+

(
γ2 −

1

2

)(QµQν

q̄21 q̄
2
2

−
PµP ν

ω2
1ω

2
2

)]
,

(25)

where κ =
√
32πG and

Pµ = −ω1u
µ
2 + ω2u

µ
1

Qµ = (q̄1 − q̄2)
µ +

q̄21
ω1

uµ
1 −

q̄22
ω2

uµ
2 , ω1 = −k̄ · u1, ω2 = −k̄ · u2 .
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Gravitational scattering of massive spinless particles

▶ The soft graviton factors are given by

S(0),µν = κ
∑
i=1,2

[
1

pi · k
p
(µ
i p

ν)
i −

1

p̃i · k
p̃
(µ
i p̃

ν)
i

]

S(1),µν = i
κ

2

∑
i=1,2

[
1

pi · k
p
(µ
i Ĵ

ν)ρ
i kρ −

1

p̃i · k
p̃
(µ
i

ˆ̃J
ν)ρ
i kρ

]

S(n),µν =
κ

2

∑
i=1,2

 Ĵµρ
i kρĴνσ

i kσ

pi · k

(
k ·

∂

∂pi

)n−2

+
ˆ̃Jµρ
i kρ

ˆ̃Jνσ
i kσ

p̃i · k

(
k ·

∂

∂p̃i

)n−2
 , n ≥ 2 .

▶ The remainder term for the amplitude is given by

Xµν =
κ3m2

1m
2
2

4

n∑
r=3

(−1)n−r

(n− r)!
(k · ∂)n−r(δ̂(4)(q1 + q2))Λ

µν
r−1 +(1 ↔ 2) ,

[SA]

where the polynomial Λµν
n is defined as

Λµν
n≥2 = Hµν

2

2n−2(q̄ · k̄)n−2

(q̄2)n−2
, Hµν

2 = −
4

(q̄2)2

(
ω2
2u

µ
1u

ν
1 −

ω1ω2

2
(uµ

2u
ν
1 + uν

2u
µ
1 )

)
.

(26)

14 / 30



LO gravitational radiation

▶ Using the expansions, the (sub)n|n≥2-leading soft radiation is given by

R(n),µν
(k̄) =

κ3m1m2

4

∫
d̂
4
q̄
[ n∑

r=0

1

(n− r)!
e
−ib·q̄

δ̂(u1 · q̄)δ̂(u2 · q̄)(ib · k̄)n−r
K

µν
r−1

+

n−1∑
r=0

(−1)n−r

(n− r)!

{
e
−ib·q̄

δ̂
(n−r)

(u1 · q̄)δ̂(u2 · q̄)(u1 · k̄)n−r
(
K

µν
r−1

)
+ e

ib·q̄
(
1 ↔ 2

)}

+

n−2∑
r=0

∑
t,s≥1

∋(t+s)=n−r

(−1)s

t!s!
e
−ib·q̄

(ib · k̄)t(u1 · k̄)sδ̂(s)(u1 · q̄)δ̂(u2 · q̄)Kµν
r−1

]
,

where the polynomial Kµν
n is defined as

K
µν
n≥1 = H

µν
1

2n−1(q̄ · k̄)n−1

(q̄2)n−1
+H

µν
0

2n(q̄ · k̄)n

(q̄2)n
,

where

H
µν
1 =

4γ

q̄2
ω2

q̄2
q̄
(µ
u
ν)
1 and H

µν
0 = −

2

q̄2

(
γ
2 −

1

2

) q̄µq̄ν
q̄2

.
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Remainder terms

▶ Collecting the logarithmic terms and upon simplifying, it matches with the log terms
of (sub)n-leading order soft radiation in eq. (??).

▶ Some terms in the (unstripped) five-point amplitude do not factorize as soft factors
times the four-point amplitude. These are known as the remainder terms. We have
identified such terms at (sub)n-leading order for n ≥ 3 in the soft radiation given by

Xµν

R,ω(n−1)
=
κ3m1m2

4

∫
d̂
4
q̄
[ n∑

r=3

1

(n− r)!
e
−ib·q̄

δ̂(u1 · q̄)δ̂(u2 · q̄)(ib · k̄)n−r
Λ

µν
r−1

+

n−1∑
r=3

(−1)n−r

(n− r)!

{
e
−ib·q̄

δ̂
(n−r)

(u1 · q̄)δ̂(u2 · q̄)(u1 · k̄)n−r
(
Λ

µν
r−1

)
+ e

ib·q̄
(
1 ↔ 2

)}

+

n−2∑
r=3

∑
t,s≥1

∋(t+s)=n−r

(−1)s

t!s!
e
−ib·q̄

(ib · k̄)t(u1 · k̄)sδ̂(s)(u1 · q̄)δ̂(u2 · q̄)Λµν
r−1

]
,

where the polynomial Λµν
n is defined in eq. (26).

▶ One can check that these remainder terms do not contribute to the logarithmic
contributions that arise in the classical limit. Hence, the low-frequency radiative field
can simply be obtained from the (sub)n soft graviton “factorization” theorems.
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(Sub)n-leading soft theorems

▶ However, the tensorial structure of Rn [Hamada,Shiu] [Li, Lin, Zhang]

Rn = ϵµν k̂α1 k̂α2 · · · k̂αn−1A
µνα1α2···αn−1

leads to the following “factorization formula” for tree-level amplitude at all orders in
the soft expansion

lim
ω→ 0

∂n
ω [ωΠ

−
n̂M5(p̃1, p̃2 → p1, p2, k)] = Π−

n̂ Ŝ
nM4(p̃1, p̃2 → p1, p2) ,

For minimally-coupled gravity theories, Bn = 0∀n. Π−
n̂ := Dn+1

z (1 + |z|2)−1 is the

projection operator, where k̂ = (1, n̂(z, z̄)) and z, z̄ are the stereographic coordinates
[Campiglia,Laddha].
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Classical soft theorems

For a generic gravitational scattering in D = 4, the radiative field has the following form under soft expansion,

hµν(ω, r, n̂) =
1

r
e
iωr

∞∑
N=−1

ω
N
h
N
µν(n̂) +

∞∑
m=0

ω
m

(logω)
m+1

h
log m
µν (n̂)

+
∑

N,M|M−N>−1

ω
M

(logω)
N
h
log(N,M)
µν (n̂) + O

(
1

r2

)
,(27)

where the leading term (memory), the leading log term (tail to the memory), and the ω logω term
(spin-dependent tail memory) for 2 → 2 scattering are given by

h
−1
µν (n̂) =

κ

4

(
S

(0)
µν ({pa}, n̂) − S

(0)
µν ({p′a}, n̂)

)
,

h
log
µν (n̂) =

κ3

16π

(
2∑

a,b=1|b̸=a

S
(1)
µν ({pa}, n̂) +

2∑
a,b=1|b̸=a

S
(1)
µν ({p′a}, n̂)

+

2∑
b=1

(p
′
b · n̂)S(0)

µν ({p′a}, n̂) −
2∑

b=1

(pb · n̂)S(0)
µν ({pa}, n̂)

)
,

h
log(1,1)
µν (n̂) =

κ3

32π

(
2∑

a,b=1|b̸=a

S
(2)
µν ({pa}, {Sa}, {ra}, n̂) +

2∑
a,b=1|b̸=a

S
(2)
µν ({p′a}, {S

′
a}, {r

′
a}, n̂)

+ 2
2∑

b=1

(p
′
b · n̂)

( 2∑
a=1

p′a,(µn̂
ρ

p′a · n̂
[(r

′
a ∧ p′a)ν)ρ + S′

a,ν)ρ]

−
2∑

a=1

pa,(µn̂
ρ

pa · n̂
[(ra ∧ pa)ν)ρ + Sa,ν)ρ]

))
. (28)
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Classical soft theorems

Here

S
(0),µν

({pa}, n̂) =

2∑
a=1

pµap
ν
a

pa · n̂
,

S
(1),µν

({pa}, n̂) = (p1 · p2)
(2(p1 · p2)2 − 3m2

1m
2
2)

[(p1 · p2)2 −m2
1m

2
2]

3/2

n̂ρ

pa · n̂
p
(µ
a (pa ∧ pb)ν)ρ

,

S
(2),µν

({pa}, {Sa}, {ra}, n̂) = (p1 · p2)
(2(p1 · p2)2 − 3m2

1m
2
2)

[(p1 · p2)2 −m2
1m

2
2]

3/2

n̂ρn̂σ

pa · n̂

(
(pa ∧ pb)µρ

(ra ∧ pa + Sa)
νσ

+ (pa ∧ pb)νσ
(ra ∧ pa + Sa)

µρ
)
. (29)

Here, {pa,Sa, ra} and {p′a,S
′
a, r

′
a} denote the initial and final {momenta, spin tensors and the unperturbed

trajectories} of the particles. κ =
√
32πG and n̂ is the unit vector on the celestial sphere.
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Solving the binary spinning black hole problem

a1 a2

r

v masses m1,m2

spins S1 = m1a1

S2 = m2a2

(c = 1)

Figure: The binary spinning black hole

▶ The no hair theorem states that black holes are characterized by only their mass,
charge and angular momentum, implying that externally the black hole behaves as a
point particle.

▶ Effective field theory (EFT), Effective One-Body (EOB) formalism to solve for the
dynamics of binary systems in gravity via PM expansion.
Scattering angle/Impulse, spin kick,...(perturbative in spin!)

Is there a way one can compute these observables exact to all orders in spin?
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Kerr solution in Effective field theory

▶ Metric in Kerr-Schild form:

gKS
µν = ηµν + ϕ lµlν

= ηµν + hµν +O(G2) ,

where h ∼ O(G) is the linear metric perturbation and lµ is null w.r.t. to both gµν

and ηµν . Here ϕSchw = 2GM
r

and ϕKerr = 2GMr
r2+a2 cos2 θ

.

▶ Trace-reversed metric perturbation (h̄µν = hµν − 1
2
hρ

ρηµν) for Schwarzschild:

h̄µν
Schw =

4GM

r
uµuν .

▶ hµν
Schw solves the harmonic-gauge linearized field equation (□hµν = −16πGTµν)

with the source

Tµν
Schw = m

∫
dτ uµuν δ̂4(x− r(τ)) .
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Kerr solution in Effective field theory

▶ Similarly for linearized Kerr [Vines]:

h̄µν
Kerr = uρu(µ exp (a ∗ ∂)ν)ρ

4GM

r
, where (a ∗ ∂)µν = ϵµνρσa

ρ∂σ ,

momentum : pµ = muµ(u2 = 1), spin vector : Sµ = maµ

▶ The conserved stress tensor of the linearized Kerr BH is given by

Tµν
Kerr(x) =

1

m

∫
dτ
[
pµpν + p(µSν)ρ∂ρ +

∑
n≥2

Cµν
n (p, a, ∂)

]
δ̂4(x− r(τ))

=
1

m

∫
dτp(µpρ exp (a ∗ ∂)ν)ρδ̂4(x− r(τ)) ,

where Sµν = ϵµναβpαaβ is the spin tensor.

▶ One can write an effective action that reproduces the leading interactions of a Kerr
Black hole [Levi,Steinhoff],[Vines].

22 / 30



Kerr as the double copy of
√
Kerr

▶ Kerr = a spinning BH in GR

▶

h̄µν = uρu(µ exp (a ∗ ∂)ν)ρ
4GM

r

▶
√
Kerr = the EM field of a certain

rotating charge distribution

▶

Aµ = uν exp (a ∗ ∂)νµ
Q

r
▶ Classical double copy [Luna, Monteiro, O’Connell, White ++]

▶ The object which sources the gauge field Aµ is called the
√
Kerr [Arkani-Hamed,

Huang O’Connell]. It is a solution of the free Maxwell’s equations with infinite
multipole moments expressed solely in terms of the charge, mass and angular
momentum of the classical object (same as the no-hair theorem for BHs)

▶ The conserved current for the
√
Kerr object:

Jµ(x) =
Q

m

∫
dτ
[
pµ + Sµρ∂ρ +

∑
n≥2

Dµ
n(p, a, ∂)

]
δ̂4(x− r(τ))

=
Q

m

∫
dτ pρ(τ) exp (a ∗ ∂)µρδ̂

4(x− r(τ)) .
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The Newman-Janis algorithm

Black Hole Amplitudes

▶ The minimally coupled 3-point amplitudes for two massive spin S particles coupled
with a graviton given by [Arkani-Hamed, Huang, Huang]5

lim
S→∞

(
A3[1

S ,2S , 3+] = κx2

(
⟨12⟩
m

)2S
)
, x = (ε+3 · p1)

matches with the leading interactions of a Kerr Black hole with linearized gravity
(hµν(k)T

µν
BH(−k)|k2→0), consistent with the no-hair theorem.

▶ For spin 0 : (universal) monopole coupling
spin 1/2 : adds (universal) dipole/spin-orbit coupling [Vaidya]
spin 1: adds Black Hole quadrupole
spin 2: adds Black Hole octupole.
[Guevara, Ochirov, Vines, Chung, Huang, Kim, Lee, Bautista, Maybee, O’Connell,
Helset, Aoude, Haddad, Damgaard, Bern, Luna, Roiban, Shen, Zeng,...]

5SL(2,C) representation of momentum 4-vector,

pαα̇ = pµσ
µ
αα̇ =

2∑
I,J=1

ϵIJλ
I
αλ̃

J
α̇ =

2∑
I,J=1

ϵIJ |pI⟩α[p
J |α̇ ,

where (I, J) are the SU(2) little group indices associated with the massive particle. The variables λI
α, λ̃

J
α̇ are

called massive spinor-helicity variables.
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The Newman-Janis algorithm

On-shell amplitudes and Newman-Janis

▶ The minimally coupled 3-point amplitudes for two massive spin S particles coupled
with a photon are given by [Arkani-Hamed, Huang,Huang]

A3[2
S ,2′S , q+] =

Q2

m2
(ε+(q) · p2)

⟨22′⟩2S

m2S−1
2

A3[2
S ,2′S , q−] =

Q2

m2
(ε−(q) · p2)

[22′]2S

m2S−1
2

▶ We set p′2 = p2 + ℏq̄ and using momentum conservation, this amplitude can be
written as

A±
3,
√
Kerr

= QA±
3,scalar e

±q̄·a2

as S → ∞ and ℏ → 0 with Sℏ being fixed. Here aµ
2 = Sℏ

m2
2
⟨2|σµ|2]

▶ For Kerr BH,

A±
3,Kerr = κ(A±

3,scalar)
2 e±q̄·a2 .

▶ This exponentiation was identified as the NJ algorithm at the level of 3-point
on-shell amplitudes [Arkani-Hamed, Huang, O’Connell].
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The Newman-Janis algorithm

Spin-dressed photon propagator

q

2a2

2′a2

1

1′

Figure: The four-point scalar -
√
Kerr amplitude with photon exchange. Here ‘a2’ denotes the

rescaled spin of the
√
Kerr particle.

▶ The four-point amplitude involving a pair of particles via photon exchange can be
constructed using the three-point amplitudes:

A4[p1, p2 → p′1p
′
2] =

1

q2
Aµ

3,
√
Kerr

[p′2, p2, q]Pµν Aν
3,scalar−QED[p′1, p1,−q]

= Aµ
3,scalar-QED

[
p′2, p2, ℏq̄

] P̃µν(q̄)

ℏ2q̄2
Aν

3,scalar-QED

[
p′1, p1,−ℏq̄

]
,

where Pµν → P̃µν(q̄) := eq̄·a2εµ+(q̄)ε
ν
−(q̄) + e−q̄·a2εν+(q̄)ε

µ
−(q̄).
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The Newman-Janis algorithm

LO Gravitational radiation

▶ The (sub)n-leading order soft radiation is given by

R(n),µν
(k̄) =

κ3m1m2

4

∫
d̂
4
q̄
[ n∑
r=0

1

(n − r)!
e
−ib·q̄

δ̂(u1 · q̄)δ̂(u2 · q̄)(ib · k̄)n−r
K

µν
r−1

+

n−1∑
r=0

(−1)n−r

(n − r)!

{
e
−ib·q̄

δ̂
(n−r)

(u1 · q̄)δ̂(u2 · q̄)(u1 · k̄)n−r
(
K

µν
r−1

)
+ e

ib·q̄
(
1 ↔ 2

)}

+

n−2∑
r=0

∑
t,s≥1

∋(t+s)=n−r

(−1)s

t!s!
e
−ib·q̄

(ib · k̄)t(u1 · k̄)sδ̂(s)(u1 · q̄)δ̂(u2 · q̄)Kµν
r−1

]
,

where the polynomial Kµν
r depends on q̄, k̄, u1, u2 and is of the order O(ωr−1).
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The Newman-Janis algorithm

LO Gravitational radiation

▶ Upon simplifying, the logarithmic term in (sub)n-leading soft radiation at order κ3 is
given by [SA]

R(ωb)n−1 log (ωb),µν =
in−1m1m2κ3

4π(n− 1)!γ3β3
γ(2γ2 − 3)(ωb)n−1 log (ωb)

×
(
u
(µ
1 u

ν)
2 −

(u2 · k̄)
(u1 · k̄)

u
(µ
1 u

ν)
1

)
+ (1 ↔ 2) .

▶ In the deflection less limit (|b| → ∞) such that ωb is fixed, all the log terms of the
form (ωb)m log (ωb)|m ≥ 1 survive and can be completely determined by the
(sub)n-soft “factorization” theorems for tree-level gravitational amplitudes.

▶ The source of such a radiative mode then is the asymptotic interaction between the
incoming or outgoing states, leading to the emission of gravitational radiation only
from t → ±∞.
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The Newman-Janis algorithm

(Sub)n-leading soft theorems

▶ We consider a 2 → 2 scattering process with a large impact parameter. These
processes can then be studied within perturbation theory.

▶ If p′a is the final momentum of a particle and the initial momentum is pa, then we
have

p′µa = pµa +

∞∑
n=1

κ2n∆p(n)µ
a ,

where ∆p
(1)µ
a is the LO linear impulse and κ2n-th term is the Nn−1LO impulse.

▶ Both logω and ω logω survive even at leading order in the coupling. This then
indicates that the terms of the form ωn logω can be determined by the so-called
(sub)n-leading soft graviton theorems for tree-level gravitational amplitudes.

29 / 30



The Newman-Janis algorithm

(Sub)n-leading soft theorems

For example, in 2-2 scattering the classical log soft graviton factor is given by

hµν(ω, n̂)|logω =
κ3

16π
log (ω)

 2∑
a,b=1

S(1),µν({pa}, k) +
2∑

a,b=1

S(1),µν({p′a}, k)

 ,

where

S(1),µν({pa}, k) = (p1 · p2)
(2(p1 · p2)2 − 3m2

1m
2
2)

[(p1 · p2)2 −m2
1m

2
2]

3/2

kρ

pa · k
p
(µ
a

(
p
ν)
a pρb − p

ν)
b pρa

)
.

The classical log soft graviton factor at leading order in the coupling takes the following form

hµν(ω, n̂)|logω = −
iκ

4
log (ω)

∑
i

1

pi · k
p
(µ
i Ĵ

ν)ρ
i kρ

κ2

2π

(p1 · p2)2 − 1
2
m2

1m
2
2√

(p1 · p2)2 −m2
1m

2
2

 ,

which arises from the action on gravitational tree-level four-point amplitude. Here

Ĵµν
i = i(pi ∧ ∂

∂pi
)µν . Thus one can use the soft graviton theorems for tree-level amplitudes in

computing the radiation kernel, which generates the ωn logω terms.

30 / 30


	Introduction to KMOC Formalism
	Results: on-shell+ NJ+ KMOC
	Soft factorization theorems
	IR-triangle
	Conclusions and Outlook
	Appendix
	The Newman-Janis algorithm


